Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal!

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
See all formats and pricing
More options …

Core/Clad Phosphate Glass Fibres Containing Iron and/or Titanium

Ifty Ahmed
  • Faculty of Engineering, Division of Materials, Mechanics and Structures, University of Nottingham, NG7 2RD
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. S. Shaharuddin
  • Department of Manufacturing and Materials Engineering, Kuliyyah of Engineering, International Islamic University Malaysia, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ N. Sharmin
  • Faculty of Engineering, Division of Materials, Mechanics and Structures, University of Nottingham, NG7 2RD
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Furniss
  • Faculty of Engineering, Division of Materials, Mechanics and Structures, University of Nottingham, NG7 2RD
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Rudd
  • Faculty of Engineering, Division of Materials, Mechanics and Structures, University of Nottingham, NG7 2RD
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-07-20 | DOI: https://doi.org/10.1515/bglass-2015-0004


Phosphate glasses are novel amorphous biomaterials due to their fully resorbable characteristics, with controllable degradation profiles. In this study, phosphate glasses containing titanium and/or iron were identified to exhibit sufficiently matched thermal properties (glass transition temperature, thermal expansion coefficient and viscosity) which enabled successful co-extrusion of glass billets to form a core/clad preform. The cladding composition for the core/clad preforms were also reversed. Fe clad and Ti clad fibres were successfully drawn with an average diameter of between 30~50 μm. The average cladding annular thickness was estimated to be less than 2 μm. Annealed core/clad fibres were degraded in PBS for a period of 27 days. The strength of the Fe clad fibres appeared to increase from 303 ± 73 MPa to 386 ± 45 MPa after nearly 2 weeks in the dissolution medium (phosphate buffered solution) before decreasing by day 27. The strength of the Ti clad fibres revealed an increase from 236 ± 53 MPa to 295 ± 61 MPa when compared at week 3. The tensile modulus measured for both core/clad fibres ranged between 51 GPa to 60 GPa. During the dissolution study, Fe clad fibres showed a peeling mechanism compared to the Ti clad fibres.

Keywords: core/clad phosphate glass fibres; mechanical properties; degradation; thermal properties


  • [1] Knowles J.C., Phosphate Based Glasses for Biomedical Applications, J. Mater. Chem. 2003, 13, 2395-2401 CrossrefGoogle Scholar

  • [2] Ahmed I., Parsons A.J., Palmer G., Knowles J.C., Walker G.S., Rudd C.D., Weight Loss, Ion Release and Initial Mechanical Properties of a Binary CalciumPhosphate Glass Fiber/PCL Composite, Acta Biomater. 2008, 4, 1307-1314 CrossrefGoogle Scholar

  • [3] Ahmed I., Lewis M., Olsen I., Knowles J.C., Phosphate Glasses for Tissue Engineering: Part 1. Processing and Characterisation of a Ternary Based P2O5-CaO-Na2O Glass System, Biomaterials 2004, 25, 491-499 CrossrefGoogle Scholar

  • [4] Franks K., Abrahams I., Knowles J.C., Development of Soluble Glasses for Biomedical Use Part I: In Vitro Solubility Measurement, J. Mater. Sci-Mater. M. 2000, 11, 609-614. CrossrefGoogle Scholar

  • [5] Bunker B.C., Arnold G.W., Wilder J.A., Phosphate Glass Dissolution in Aques Solutions, J. Non-Cryst. Solids 1984, 64, 291-316 Google Scholar

  • [6] Ahmed I., Parsons A.J., Rudd C.D., Nazhat S.N., Knowles J.C., Guerry P., Smith M.E., Comparison of Phosphate-based Glasses in the Range 50P2O5-(50-x)CaO-xNa2OPrepared Using Different Precursors, Glass Technol-Part A 2008, 49, 63-72 Google Scholar

  • [7] Abou Neel E.A., Salih V., Knowles J.C., Phosphate-based glasses. In: Ducheyne P. (Ed.), Comprehensive Biomaterials, 1st ed., Elsevier Science 2011 Google Scholar

  • [8] Ahmed I., Collins C.A., Lewis M.P., Olsen I., Knowles J.C., Processing, Characterisation and Biocompatibility of Iron- Phosphate Glass Fibres for Tissue Engineering, Biomaterials 2004, 25, 3223-3232 CrossrefGoogle Scholar

  • [9] Navarro M., Ginebra M., Planell J.A., Cellular Response to Calcium Phosphate Glasses with Controlled Solubility, J. Biomed. Mater. Res. A 2003, 67A, 1009-1015 Google Scholar

  • [10] Abou Neel E.A., Knowles J.C., Physical and Biocompatibility Studies of Novel Titanium Dioxide Doped Phosphate-based Glasses for Bone Tissue Engineering Applications, J.Mater. Sci- Mater. M. 2008, 19, 377-386 CrossrefGoogle Scholar

  • [11] Ahmed I., Lewis M., Olsen I., Knowles J.C., Phosphate Glasses for Tissue Engineering: Part 2. Processing and Characterisation of a Ternary based P2O5-CaO-Na2O Glass-fibre System, Biomaterials 2004, 25,501-507 CrossrefGoogle Scholar

  • [12] Abou Neel E.A., Ahmed I., Pratten J., Nazhat S.N., Knowles J.C., Characterisation of Antibacterial Copper Releasing Degradable Phosphate Glass Fibres, Biomaterials 2005, 26,2247-2254 CrossrefGoogle Scholar

  • [13] Kobayashi H.Y.L.S., Brauer D.S., Rüssel C., Mechanical Properties of a Degradable Phosphate Glass Fibre Reinforced Polymer Composite for Internal Fracture Fixation,Mat. Sci. Eng. C-Mater. 2010, 30,1003-1007 CrossrefGoogle Scholar

  • [14] Andriano K.P., Daniels A.U., Heller J., Biocompatibility and Mechanical Properties of a Totally Absorbable Composite Material for Orthopaedic Fixation Devices, J. Appl. Biomater. 1992, 3, 197-206 CrossrefGoogle Scholar

  • [15] Felfel R.M., Ahmed I., Parsons A.J., Haque P., Walker G.S., Rudd C.D., Investigation of Crystallinity, Molecular Weight Change, and Mechanical Properties of PLA/PBG Bioresorbable Composites as Bone Fracture Fixation Plates, J. Biomater. Appl. 2012, 26,765-789 Web of ScienceCrossrefGoogle Scholar

  • [16] Parsons A.J., Ahmed I., Haque P., Fitzpatrick B., Niazi M.I.K., Walker G.S., Rudd C.D., Phosphate Glass Fibre Composites for Bone Repair, J. Bionic Eng. 2009, 6, 318-323 Web of ScienceCrossrefGoogle Scholar

  • [17] Furniss D., Seddon A.B., Towards Monomode Proportioned Fibreoptic Preforms by Extrusion, J. Non- Cryst. Solids, 1999, 256& 257, 232-236. Google Scholar

  • [18] Savage S.D., Miller C.A., Furniss D., Seddon A.B., Extrusion of Chalcogenide Glass Preforms and Drawing to Multimode Optical Fibers, J. Non-Cryst. Solids 2008, 354, 3418-3427 Web of ScienceGoogle Scholar

  • [19] Vitale-Brovarone C., Novajra G., Milanese D., Lousteau J., Knowles J.C., Novel Phosphate Glasses with Different Amounts of TiO2 for Biomedical Applications: Dissolution Tests and Proof of Concept of Fibre Drawing, Mat. Sci. Eng. C-Mater. 2011, 31, 434-442 Web of ScienceCrossrefGoogle Scholar

  • [20] Abou Neel E.A., Young A.M., Nazhat S.N., Knowles J.C., A Facile Synthesis Route to Prepare Microtubes from Phosphate Glass Fibres, Adv. Mater. 2007, 19, 2856-2862 Google Scholar

  • [21] Mulligan A.M., Wilson M., Knowles J.C., The Effect of Increasing Copper Content in Phosphate-based Glasses on Biofilms of Streptococcus Sanguis, Biomaterials 2003, 24, 1797-1807 CrossrefGoogle Scholar

  • [22] Ahmed A.A., Ali A.A., Mahmoud D.A.R., El-Fiqi A.M., Preparation and Characterization of Antibacterial P2O5-CaO-Na2OAg2O Glasses, J. Biomed. Mater. Res. A 2011, 98A, 132-142 Google Scholar

  • [23] Moss R.M., Structural Characteristics of Antibacterial Bioresorbable Phosphate Glass, Adv. Funct. Mater. 2008, 18, 634- 639 Web of ScienceCrossrefGoogle Scholar

  • [24] Ahmed I., Ready D.,Wilson M., Knowles J.C., Antimicrobial Effect of Silver-doped Phosphate-based Glasses, J. Biomed. Mater. Res. A 2006, 79A, 618-626 Google Scholar

  • [25] Ahmed I., Abou Neel E.A., Valappil S.P., Nazhat S.N., Pickup D.M., Carta D., Carroll D.L., Newport R.J., Smith M.E., Knowles J.C., The Structure and Properties of Silver-Doped Phosphatebased Glasses, J. Mater. Sci. 2007, 42, 9827-9835 CrossrefGoogle Scholar

  • [26] Wray P., ’Cotton candy’ that heals?, Am. Ceram. Soc. Bull. 2011, 90, 25-28 Google Scholar

  • [27] Gent A.N., Theory of the Parallel Plate Viscometer, Brit J App Phys 1960, 11, 85-87 Google Scholar

  • [28] Burling L., Novel Phosphate Glasses for Bone Regeneration Applications, PhD thesis, University of Nottingham, Nottingham, UK, 2005 Google Scholar

  • [29] Mairaj A.K., Feng X., Hewak D.W., Extruded ChannelWaveguides in a Neodymium-doped Lead-Silicate Glass for Integrated Optic Applications, Appl. Phys. Lett. 2003, 83, 3450-3452 Google Scholar

  • [30] Lee E.T.Y., Taylor E.R.M., Two-die Assembly for the Extrusion of Glasses with Dissimilar Thermal Properties for Fibre Optic Preforms, J. Mater. Process Tech. 2007, 184, 325-329 Google Scholar

  • [31] Paek U.C., Kurkjian C.R., Calculation of Cooling Rate and Induced Stresses in Drawing of Optical Fibre, J. Am. Ceram. Soc. 1975, 58, 330-335 Google Scholar

  • [32] Jordery S., Naftaly M., Jha A., A Review of Optical and Thermal Properties of Cadmium-Mixed Halide Glass Host for the 1.3¯I 1/4m Pr3+-doped Amplifier, J. Non-Cryst. Solids 1996, 196, 199-203 Google Scholar

  • [33] Daly J.C., Fiber Optics, Taylor & Francis Ltd., Boca Raton, 1984 Google Scholar

  • [34] Kurkjian C.R., Mechanical Properties of Phosphate Glasses, J. Non-Cryst. Solids. 2000, 263 & 264, 207-212 Google Scholar

  • [35] Pukh V., Baikova L., Kireenko M., Tikhonova L., On the Kinetics of Crack Growth in Glass, Glass Phys. Chem 2009, 35, 560-566 Google Scholar

  • [36] Orcel G., and Biswas D., Influence of Processing Parameters on the Strength of Fluoride Glass Fibers, J. Am. Ceram. Soc. 1991, 74, 1373-1377 Google Scholar

  • [37] Wang J., Prasad S., Kiang K., Pattnaik R.K., Toulouse J., Jain H., Source of Optical Loss in Tellurite Glass Fibers, J. Non-Cryst. Solids 2006, 352, 510-513 Google Scholar

  • [38] Barton G.W., Law S.H., McNamara P., Phan T.N., Measurement and Control Challenges for the Specialty Optical Fibre Industry in the 21st Century, Proceedings of the 5th Asian Control Conference, (20-23 July 2004, Melbourne, Australia), 2004, 1137-1144 Google Scholar

  • [39] Ahmed I., Cronin P., Abou Neel E.A., Parsons A.J., Knowles J., Rudd, C.D., Retention of Mechanical Properties and Cytocompatibility of a Phosphate-based Glass Fibre/Polylactic Acid Composite, J. Biomed. Mater. Res. B 2009, 89, 18-27 Google Scholar

  • [40] Abou Neel E.A., Chrzanowski W., Georgiou G., Dalby M.J., Knowles J.C., In Vitro Biocompatibility and Mechanical Performance of Titanium Doped High Calcium Oxide Metaphosphate- Based Glasses, J. Tissue Eng. 2010, Google Scholar

  • [41] Hayden J.S., Marker III A.J., Suratwala T.I., Campbell J.H., Surface Tensile Layer Generation During Thermal Annealing of Phosphate Glass, J. Non-Cryst. Solids 2000, 263& 264, 228-239 Google Scholar

  • [42] Cozien-Cazuc S., Characterisation of Resorbable Phosphate Glass Fibers, PhD thesis, University of Nottingham, Nottingham, UK, 2006 Google Scholar

  • [43] Colaizzi J., Matthewson M.J., Iqbal T., Shahriari M.R., Mechanical Properties of Aluminum Fluoride Glass Fibers, Proceedings of The International Society for Optical Engineering (5-6 Sept 1991, Boston, USA), 1991, 26-33 Google Scholar

  • [44] Karabulut M., Melnik E., Stefan R., Marasinghe G.K., Ray C.S., Kurkjian C.R., Day D.E., Mechanical and Structural Properties of Phosphate Glasses, J. Non-Cryst. Solids 2001, 288, 8-17 Google Scholar

  • [45] Kordes E., Vogel W. and Feterowsk, Physikalisch-chemische Untersuchungen über die Eigenschaften und den Feinbau von Phosphatgläsern, Z. Elektrochem, Vol 57, Issue 4, (1953) pp 282. Google Scholar

About the article

Received: 2015-04-30

Accepted: 2015-05-16

Published Online: 2015-07-20

Citation Information: Biomedical glasses, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0004.

Export Citation

© 2015 I. Ahmed et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in