Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal!

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Bioactivity of toothpaste containing bioactive glass in remineralizing media: effect of fluoride release from the enzymatic cleavage of monofluorophosphate.

Anthony L. B. Maçon / Esther M. Valliant / Jonathan S. Earl / Julian R. Jones
Published Online: 2015-07-21 | DOI: https://doi.org/10.1515/bglass-2015-0005

Abstract

Objectives. The aim was to introduce a new methodology to characterize toothpaste containing bioactive glass and to evaluate the effect of release of fluoride ions, by cleaving monofluorophosphate (MFP), on the mineral forming ability of Sensodyne Repair & Protect (SRP). which contains NovaMinTM (bioactive glass, 45S5 composition).

Methods. SRP, NovaMin particles, and placebo paste (PLA) which did not contain NovaMin, were immersed into a remineralization media (RS), which mimics the ionic strength of human saliva, for 3 days with different concentrations of alkaline phosphatase (ALP): 0, 25 and 75 U.L−1. Ion concentration profiles and pH were monitored by ICPOES and F− ion selective electrode. Remaining solids were collected by freeze-drying and their surfaces analysed.

Results. Hydroxyapatite (HA) formed on the surface of BG alone (after 1 h) and in toothpaste (after 2 h), whereas PLA did not induce any precipitation. ALP cleaved MFP at different rates depending on the enzyme concentration. Increasing the concentration of ALP from 0 and 75 U.L−1 reduced the time of HA formation from 2 h to 24 h. However, the presence of fluoride induced the precipitation of fluorapatite. No evidence of fluorite (CaF2) was observed. The apatite formation ability of toothpaste can be assessed using the presented method.

References

  • [1] R.H. Bababneh, A.T. Khouri and M. Addy. Dentine hypersensitivity – an enigma? a review of terminology, mechanisms, aetiology and management. Br Dent J 1999, 187, 606-611. Google Scholar

  • [2] M. Brannstrom, L.A. Linden and G. Johnson. Movement of dentinal and pulpal fluid caused by clinical procedures. J Dent Res 1968, 47, 679-682. CrossrefGoogle Scholar

  • [3] L. Gendreau, A.P. Barlow and S.C. Mason. Overview of the clinical evidence for the use of NovaMinr in providing relief from pain of dentine hypersensitivity. J Cin Dent 2011, 22, 90-95. Google Scholar

  • [4] J.S. Wefel. NovaMinr: Likely clinical success. Adv Dent Res 2009, 21, 4043. Google Scholar

  • [5] Q.D. Min, Z. Bian, H. Jiang, D.C. Greenspan, A.K. Burwell, J. Zhong and B.J. Tai. Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (NovaMin) for treatment of dentine hypersensitivity. Am J Dent 2008, 21, 210-214. Google Scholar

  • [6] L.L. Hench, R.J. Splinter, W.C. Allen and T.K. Greenlee. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117-141. Google Scholar

  • [7] E.C. Reynolds. Calciumphosphate-based remineraliszation systems: scientific evidence? Aust Dent J 2008, 53, 268-273. CrossrefGoogle Scholar

  • [8] M.T. Kato, M. Lancia, S.H.C. Sales-Peres and M.A.R. Preventive effect of commercial desensitizing toothpastes on bovine enamel erosion in vitro. Caries Res 2010, 44, 85-89. Web of ScienceCrossrefGoogle Scholar

  • [9] Z. Wang, Y. Sa, S. Sauro, H. Chen, W. Xing, X. Ma, T. Jiang and Y. Wang. Effect of desentising toothpastes on dentinal tubule occlusion: A dentine permeability measurement and SEM in vitro study. J Dent. 2010, 38, 400-410. Web of ScienceCrossrefGoogle Scholar

  • [10] Z. Wang, T. Jiang, S. Sauro, D.H. Pashley, M. Toledano, R. Osorio, S. Liang, W. Xing, Y. Sa, Y. Wang. The dentine remineralization activity of a desensitizing bioactive glass-containing toothpaste: an in vitro study. Aust Dent J. 2011, 56, 372-381. CrossrefWeb of ScienceGoogle Scholar

  • [11] G. LaTorre and D.C. Greenspan. The role of ionic release from NovaMin (calcium sodium phosphosilicate_ in tubule occlusion: an exploratory in vitro using radio-labeled isotopes. J Clin Dent. 2010, 21, 72-76. Google Scholar

  • [12] E.S. Gjorgievska, J.W. Nicholson, S.M. Apostolska, N.J. Coleman, S.E. Booth, I.J. Slipper and Mitko I. Mladenov. Interfacial properties of three different bioactive dentine substitutes. Microsc. Microanal. 2013 19, 1450-1457. CrossrefWeb of ScienceGoogle Scholar

  • [13] J.S. Earl, N. Topping, J. Elle, R.M. Langford and D.C. Greenspan. Physical and chemical characterization of the surface layers formed on dentin following treatment with fluoridated toothpaste containing NovaMin. J Clin Dent. 2011, 22, 68-73. Google Scholar

  • [14] L.N. Devonshire and H.N. Rowley. Kinetics of hydrolysis of Fluorophosphates. I. Monofluorophosphoric acid. Inorg. Chem. 1962, 1, 680-683. CrossrefGoogle Scholar

  • [15] E.I.F. Pearce and G.H. Dibdin. The effect of pH, temperature and plaque thickness on the hydrolysis of monofluorophosphate in experimental dental plaque. Caries Res 2002, 37, 178-184. CrossrefGoogle Scholar

  • [16] E.A. Naumova, P. Kuehnl, P. Hertenstein, L. Markovic, R.A. Jordan, P. Gaengler and W.H. Arnold. Fluoride bioavailability in saliva and plaque. BMC Oral Health. 2012, 12, 1-6. Web of ScienceGoogle Scholar

  • [17] W.C. Chen, C.H. Chen, J.C. Kung, Y.C. Hsiao, C.J. Shih and C.S. Chien. Phosphorus effects of mesoporous bioactive glass on occlude exposed dentine. Materials. 2013, 6, 5335-5351. CrossrefGoogle Scholar

  • [18] A.L.B. Maçon, T.B. Kim, E.M. Valliant, K. Goetschius, R.K. Brow, D.E. Day, A. Hoppe, A.R. Boccaccini, I.Y. Kim, C. Ohtsuki, T. Kokubo, A. Osaka, M. Vallet-Regí, D. Arcos, L. Fraile, A.J. Salinas, A. Teixeira, Y. Vueva, R.M. Almeida, M. Miola, C. Vitale- Brovarone, E. Verné,W. Höland, J.R. Jones, A unified in vitro evaluation for apatite forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med. 2015, 26 (115). CrossrefWeb of ScienceGoogle Scholar

  • [19] S. Dabra and P. Singh. Evaluating the levels of salivary alkaline and acid phosphatase activities as biochemical marlers for periodontal disease: A case series. Dent Res J. 2012, 9, 41-45. CrossrefGoogle Scholar

  • [20] P. Scherer and S.F. Fisher. Theoretical molecular biophysics: chap. Debye-Hückel theory. Springer. 2010, 45-59. Google Scholar

  • [21] A. Oyane, H.M. Kim, T. Furuya. T. Kokubo, T. Miyazaki and T. Nakamura. Preparation and assessment of revised simulated body fluid. J Biomed Mater Res. 2003, 65A, 188-195. CrossrefGoogle Scholar

  • [22] H. McDowell, T.M. Gregory and W.E. Brown. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5,15, 25, and 37∘C. J Res Nat Bur Stand. 1977, 81A, 273-281. Google Scholar

  • [23] C. Ohtsuki, T. Kobubo and T. Yamamuro. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992, 143, 84-92 Google Scholar

  • [24] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Mater Sci: Mater Med. 1990, 24, 721-734. Google Scholar

  • [25] F. Barrere, C.A. van Blitterswijk, K. de Groot and P. Layrolle. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials. 2002, 23, 1921-1930. CrossrefGoogle Scholar

  • [26] B.J. Steel, J.M. Stokes and R.H. Stokes. Individual ion Mobilities in mixtures of non-electrolytes and water. J. Phys. Chem 1958 62, 1514-1516. Google Scholar

  • [27] J. Klimek, M. Jung and S. Jung. Interindividual differences in degradation of sodium monofluorophosphate by saliva in relation to oral health status. Archs Oral Biol. 1997, 42, 181-184. Google Scholar

  • [28] Y. Seo and M. Murakami, H. Watari, Y. Imai, K. Yoshizaki, H. Nishikawa and T. Morimoto. Intracellular pH determination by 31P-NMR Technique. The Second dissociation constant of phosphoric acid in a biological system. J. Biochem. 1983, 94, 729- 734. Google Scholar

  • [29] X. Lu and Y. Leng. Theoretical analysis of calciumphosphate precipitation in simulated body fluid. Biomaterials 2005, 26, 1097- 1108. CrossrefGoogle Scholar

  • [30] A.S. Bakry, H. Takahashi, M. Otsuki and J. Tagami. The durability of phosphoric acid promoted Bioglass-dentine interaction layer. Dent Mat. 2013, 29, 357-364. Web of ScienceGoogle Scholar

  • [31] R. Koncki, D. Ogonczyk, S. Glad. Potentiometric assay for acid and alkaline phosphatase. Anal. Chim. Acta. 2005, 538, 257- 261. Google Scholar

  • [32] M. Mneimne, R.G. Hill, A.J. Bushby and D.S. Brauer. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011, 7, 1827-34. Web of ScienceCrossrefGoogle Scholar

  • [33] N.H. de Leeuw. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. J. Phys. Chem. B. 2004, 108, 1809-1811. CrossrefGoogle Scholar

  • [34] G.L. Vogel, Y. Mao, L.C. Chow and H.M. Proskin. Fluoride in plaque fluid, plaque, and saliva measured for 2 hours after a sodiumfluoride monofluorophosphate rinse. Caries Res. 2000, 34, 404-411. CrossrefGoogle Scholar

About the article

Received: 2015-05-06

Accepted: 2015-05-16

Published Online: 2015-07-21


Citation Information: Biomedical glasses, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0005.

Export Citation

© 2015 A. L. B. Maçon et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in