Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
See all formats and pricing
More options …

Bioactivity of toothpaste containing bioactive glass in remineralizing media: effect of fluoride release from the enzymatic cleavage of monofluorophosphate.

Anthony L. B. Maçon / Esther M. Valliant / Jonathan S. Earl / Julian R. Jones
Published Online: 2015-07-21 | DOI: https://doi.org/10.1515/bglass-2015-0005


Objectives. The aim was to introduce a new methodology to characterize toothpaste containing bioactive glass and to evaluate the effect of release of fluoride ions, by cleaving monofluorophosphate (MFP), on the mineral forming ability of Sensodyne Repair & Protect (SRP). which contains NovaMinTM (bioactive glass, 45S5 composition).

Methods. SRP, NovaMin particles, and placebo paste (PLA) which did not contain NovaMin, were immersed into a remineralization media (RS), which mimics the ionic strength of human saliva, for 3 days with different concentrations of alkaline phosphatase (ALP): 0, 25 and 75 U.L−1. Ion concentration profiles and pH were monitored by ICPOES and F− ion selective electrode. Remaining solids were collected by freeze-drying and their surfaces analysed.

Results. Hydroxyapatite (HA) formed on the surface of BG alone (after 1 h) and in toothpaste (after 2 h), whereas PLA did not induce any precipitation. ALP cleaved MFP at different rates depending on the enzyme concentration. Increasing the concentration of ALP from 0 and 75 U.L−1 reduced the time of HA formation from 2 h to 24 h. However, the presence of fluoride induced the precipitation of fluorapatite. No evidence of fluorite (CaF2) was observed. The apatite formation ability of toothpaste can be assessed using the presented method.


  • [1] R.H. Bababneh, A.T. Khouri and M. Addy. Dentine hypersensitivity – an enigma? a review of terminology, mechanisms, aetiology and management. Br Dent J 1999, 187, 606-611. Google Scholar

  • [2] M. Brannstrom, L.A. Linden and G. Johnson. Movement of dentinal and pulpal fluid caused by clinical procedures. J Dent Res 1968, 47, 679-682. CrossrefGoogle Scholar

  • [3] L. Gendreau, A.P. Barlow and S.C. Mason. Overview of the clinical evidence for the use of NovaMinr in providing relief from pain of dentine hypersensitivity. J Cin Dent 2011, 22, 90-95. Google Scholar

  • [4] J.S. Wefel. NovaMinr: Likely clinical success. Adv Dent Res 2009, 21, 4043. Google Scholar

  • [5] Q.D. Min, Z. Bian, H. Jiang, D.C. Greenspan, A.K. Burwell, J. Zhong and B.J. Tai. Clinical evaluation of a dentifrice containing calcium sodium phosphosilicate (NovaMin) for treatment of dentine hypersensitivity. Am J Dent 2008, 21, 210-214. Google Scholar

  • [6] L.L. Hench, R.J. Splinter, W.C. Allen and T.K. Greenlee. Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 1971, 5, 117-141. Google Scholar

  • [7] E.C. Reynolds. Calciumphosphate-based remineraliszation systems: scientific evidence? Aust Dent J 2008, 53, 268-273. CrossrefGoogle Scholar

  • [8] M.T. Kato, M. Lancia, S.H.C. Sales-Peres and M.A.R. Preventive effect of commercial desensitizing toothpastes on bovine enamel erosion in vitro. Caries Res 2010, 44, 85-89. Web of ScienceCrossrefGoogle Scholar

  • [9] Z. Wang, Y. Sa, S. Sauro, H. Chen, W. Xing, X. Ma, T. Jiang and Y. Wang. Effect of desentising toothpastes on dentinal tubule occlusion: A dentine permeability measurement and SEM in vitro study. J Dent. 2010, 38, 400-410. Web of ScienceCrossrefGoogle Scholar

  • [10] Z. Wang, T. Jiang, S. Sauro, D.H. Pashley, M. Toledano, R. Osorio, S. Liang, W. Xing, Y. Sa, Y. Wang. The dentine remineralization activity of a desensitizing bioactive glass-containing toothpaste: an in vitro study. Aust Dent J. 2011, 56, 372-381. CrossrefWeb of ScienceGoogle Scholar

  • [11] G. LaTorre and D.C. Greenspan. The role of ionic release from NovaMin (calcium sodium phosphosilicate_ in tubule occlusion: an exploratory in vitro using radio-labeled isotopes. J Clin Dent. 2010, 21, 72-76. Google Scholar

  • [12] E.S. Gjorgievska, J.W. Nicholson, S.M. Apostolska, N.J. Coleman, S.E. Booth, I.J. Slipper and Mitko I. Mladenov. Interfacial properties of three different bioactive dentine substitutes. Microsc. Microanal. 2013 19, 1450-1457. CrossrefWeb of ScienceGoogle Scholar

  • [13] J.S. Earl, N. Topping, J. Elle, R.M. Langford and D.C. Greenspan. Physical and chemical characterization of the surface layers formed on dentin following treatment with fluoridated toothpaste containing NovaMin. J Clin Dent. 2011, 22, 68-73. Google Scholar

  • [14] L.N. Devonshire and H.N. Rowley. Kinetics of hydrolysis of Fluorophosphates. I. Monofluorophosphoric acid. Inorg. Chem. 1962, 1, 680-683. CrossrefGoogle Scholar

  • [15] E.I.F. Pearce and G.H. Dibdin. The effect of pH, temperature and plaque thickness on the hydrolysis of monofluorophosphate in experimental dental plaque. Caries Res 2002, 37, 178-184. CrossrefGoogle Scholar

  • [16] E.A. Naumova, P. Kuehnl, P. Hertenstein, L. Markovic, R.A. Jordan, P. Gaengler and W.H. Arnold. Fluoride bioavailability in saliva and plaque. BMC Oral Health. 2012, 12, 1-6. Web of ScienceGoogle Scholar

  • [17] W.C. Chen, C.H. Chen, J.C. Kung, Y.C. Hsiao, C.J. Shih and C.S. Chien. Phosphorus effects of mesoporous bioactive glass on occlude exposed dentine. Materials. 2013, 6, 5335-5351. CrossrefGoogle Scholar

  • [18] A.L.B. Maçon, T.B. Kim, E.M. Valliant, K. Goetschius, R.K. Brow, D.E. Day, A. Hoppe, A.R. Boccaccini, I.Y. Kim, C. Ohtsuki, T. Kokubo, A. Osaka, M. Vallet-Regí, D. Arcos, L. Fraile, A.J. Salinas, A. Teixeira, Y. Vueva, R.M. Almeida, M. Miola, C. Vitale- Brovarone, E. Verné,W. Höland, J.R. Jones, A unified in vitro evaluation for apatite forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med. 2015, 26 (115). CrossrefWeb of ScienceGoogle Scholar

  • [19] S. Dabra and P. Singh. Evaluating the levels of salivary alkaline and acid phosphatase activities as biochemical marlers for periodontal disease: A case series. Dent Res J. 2012, 9, 41-45. CrossrefGoogle Scholar

  • [20] P. Scherer and S.F. Fisher. Theoretical molecular biophysics: chap. Debye-Hückel theory. Springer. 2010, 45-59. Google Scholar

  • [21] A. Oyane, H.M. Kim, T. Furuya. T. Kokubo, T. Miyazaki and T. Nakamura. Preparation and assessment of revised simulated body fluid. J Biomed Mater Res. 2003, 65A, 188-195. CrossrefGoogle Scholar

  • [22] H. McDowell, T.M. Gregory and W.E. Brown. Solubility of Ca5(PO4)3OH in the system Ca(OH)2-H3PO4-H2O at 5,15, 25, and 37∘C. J Res Nat Bur Stand. 1977, 81A, 273-281. Google Scholar

  • [23] C. Ohtsuki, T. Kobubo and T. Yamamuro. Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. J Non-Cryst Solids. 1992, 143, 84-92 Google Scholar

  • [24] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Mater Sci: Mater Med. 1990, 24, 721-734. Google Scholar

  • [25] F. Barrere, C.A. van Blitterswijk, K. de Groot and P. Layrolle. Influence of ionic strength and carbonate on the Ca-P coating formation from SBFx5 solution. Biomaterials. 2002, 23, 1921-1930. CrossrefGoogle Scholar

  • [26] B.J. Steel, J.M. Stokes and R.H. Stokes. Individual ion Mobilities in mixtures of non-electrolytes and water. J. Phys. Chem 1958 62, 1514-1516. Google Scholar

  • [27] J. Klimek, M. Jung and S. Jung. Interindividual differences in degradation of sodium monofluorophosphate by saliva in relation to oral health status. Archs Oral Biol. 1997, 42, 181-184. Google Scholar

  • [28] Y. Seo and M. Murakami, H. Watari, Y. Imai, K. Yoshizaki, H. Nishikawa and T. Morimoto. Intracellular pH determination by 31P-NMR Technique. The Second dissociation constant of phosphoric acid in a biological system. J. Biochem. 1983, 94, 729- 734. Google Scholar

  • [29] X. Lu and Y. Leng. Theoretical analysis of calciumphosphate precipitation in simulated body fluid. Biomaterials 2005, 26, 1097- 1108. CrossrefGoogle Scholar

  • [30] A.S. Bakry, H. Takahashi, M. Otsuki and J. Tagami. The durability of phosphoric acid promoted Bioglass-dentine interaction layer. Dent Mat. 2013, 29, 357-364. Web of ScienceGoogle Scholar

  • [31] R. Koncki, D. Ogonczyk, S. Glad. Potentiometric assay for acid and alkaline phosphatase. Anal. Chim. Acta. 2005, 538, 257- 261. Google Scholar

  • [32] M. Mneimne, R.G. Hill, A.J. Bushby and D.S. Brauer. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses. Acta Biomater. 2011, 7, 1827-34. Web of ScienceCrossrefGoogle Scholar

  • [33] N.H. de Leeuw. Resisting the onset of hydroxyapatite dissolution through the incorporation of fluoride. J. Phys. Chem. B. 2004, 108, 1809-1811. CrossrefGoogle Scholar

  • [34] G.L. Vogel, Y. Mao, L.C. Chow and H.M. Proskin. Fluoride in plaque fluid, plaque, and saliva measured for 2 hours after a sodiumfluoride monofluorophosphate rinse. Caries Res. 2000, 34, 404-411. CrossrefGoogle Scholar

About the article

Received: 2015-05-06

Accepted: 2015-05-16

Published Online: 2015-07-21

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0005.

Export Citation

© 2015 A. L. B. Maçon et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Xiaojing Chen, Xiaohui Chen, Alfonso Pedone, David Apperley, Robert G. Hill, and Natalia Karpukhina
Scientific Reports, 2018, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in