[1] Salgado A.J., Coutinho O.P., Reis RL., Bone tissue engineering:
State of the art and future trends, Macromol. Biosci. 2004, 4,
743–765
CrossrefGoogle Scholar
[2] Shrivats A.R., McDermott M.C., Hollinger J.O., Bone tissue engineering:
state of the union, Drug Discov. Today 2014, 19,
781–786
CrossrefGoogle Scholar
[3] Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L., Natural
and genetically engineered proteins for tissue engineering,
Prog. Polym. Sci. 2012, 37, 1–17
CrossrefGoogle Scholar
[4] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med.
2006, 17, 967–978
CrossrefGoogle Scholar
[5] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bonding
mechanisms at the interface of ceramic prosthetic materials,
J. Biomed. Mater. Res. 1971, 5, 117–141
CrossrefGoogle Scholar
[6] Hench L.L., Polak J.M., Third-generation biomedicalmaterials.
Science 2002, 295, 1014–1017
CrossrefGoogle Scholar
[7] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for in
situ tissue regeneration, J. Biomater. Sci. Polym. Ed. 2004, 15,
543–562
CrossrefGoogle Scholar
[8] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactive
glasses on angiogenesis: a review of in vitro and in vivo
evidences, Tissue Eng. Part B Rev. 2010, 16, 199–207
CrossrefGoogle Scholar
[9] Jones J.R., Review of bioactive glass: From Hench to hybrids,
Acta. Biomater. 2013, 9, 4457–4486
CrossrefGoogle Scholar
[10] Gomez-Vega J., Saiz E., Tomsia A., Marshall G., Marshall S.,
Bioactive glass coatings with hydroxyapatite and Bioglassr
particles on Ti-based implants. 1. Processing, Biomaterials
2000, 21, 105–111
Google Scholar
[11] Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz-
Herrera J.A., Ochoa I., et al., The pro-angiogenic properties of
multi-functional bioactive glass composite scaffolds, Biomaterials
2011, 32, 4096–4108
CrossrefGoogle Scholar
[12] Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B.,
Bonewald L.F., et al., Bioactive glass in tissue engineering,
Acta Biomater. 2011, 7, 2355–2373
CrossrefGoogle Scholar
[13] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable
and bioactive porous polymer/inorganic composite scaffolds
for bone tissue engineering, Biomaterials 2006, 27,
3413–3431
CrossrefGoogle Scholar
[14] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological
response to ionic dissolution products from bioactive
glasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774
CrossrefGoogle Scholar
[15] Brown K.H.,Wuehler S.E., Peerson J.M., The importance of zinc
in human nutrition and estimation of the global prevalence of
zinc deficiency, Food Nutr. Bull. 2001, 22, 113–125
CrossrefGoogle Scholar
[16] Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou
M.E., Zinc and human health: an update, Arch. Toxicol. 2012,
86, 521–534
CrossrefGoogle Scholar
[17] Yamaguchi M., Role of nutritional zinc in the prevention of osteoporosis,
Mol. Cell. Biochem. 2010, 338, 241–254
CrossrefGoogle Scholar
[18] Aydin S.B., Hanley L., Antibacterial activity of dental composites
containing zinc oxide nanoparticles, J. Biomed. Mater.
Res. Part B Appl. Biomater. 2010, 94, 22–31
Google Scholar
[19] Yamaguchi M., Yamaguchi R., Action of zinc on bone
metabolism in rats: Increases in alkaline phosphatase
activity and DNA content. Biochem Pharmacol 1986, 35,
773–777
CrossrefGoogle Scholar
[20] Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H.,
Ishikawa K., et al., Zinc-releasing calcium phosphate for stimulating
bone formation, Mater. Sci. Eng. C 2002, 22, 21–25
CrossrefGoogle Scholar
[21] Stefanidou M., Maravelias C., Dona A., Spiliopoulou C., Zinc:
a multipurpose trace element, Arch. Toxicol. 2006, 80, 1–9
CrossrefGoogle Scholar
[22] Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology.
Physiol. Rev. 1993, 73, 79–118
Google Scholar
[23] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E.,
Agren M.S., Zinc in wound healing: Theoretical, experimental,
and clinical aspects, Wound Repair Regen. 2007, 15, 2-16
CrossrefGoogle Scholar
[24] Haumont S., Distribution of zinc in bone tissue, J. Histochem.
Cytochem. 1961, 9, 141-145
CrossrefGoogle Scholar
[25] Murray E.J., Messer H.H., Turnover of bone zinc during normal
and accelerated bone loss in rats, J. Nutr. 1981, 111, 1641–1647
Google Scholar
[26] Hsieh H.S., Navia J.M., Zinc deficiency and bone formation in
guinea pig alveolar implants, J. Nutr. 1980, 110, 1581–1588
Google Scholar
[27] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on
serum somatomedin levels and skeletal growth in young rats,
Endocrinology 1984, 114, 1860–1863
CrossrefGoogle Scholar
[28] Aitken J.M., Factors affecting the distribution of zinc in the human
skeleton, Calcif. Tissue Res. 1976, 20, 23–30
CrossrefGoogle Scholar
[29] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on
bone formation in tissue culture, Biochem. Pharmacol. 1987,
36, 4007–4012
CrossrefGoogle Scholar
[30] Yamaguchi M., Role of Zinc in Bone Formation and Bone Resorption,
1998, 135, 119–135
Google Scholar
[31] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S.,
O’Shea H., et al., Composition–structure–property (Zn2+ and
Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potential
components for nerve guidance conduits, Mater. Sci.
Eng. C 2011, 31, 669–676
CrossrefGoogle Scholar
[32] Sabbatini M., Boccafoschi F., Bosetti M., Cannas M., Adhesion
and differentiation of neuronal cells on Zn-doped bioactive
glasses, J. Biomater. Appl. 2014, 28, 708–718
CrossrefGoogle Scholar
[33] Hasan M.S., Kehoe S., Boyd D., Temporal analysis of dissolution
by-products and genotoxic potential of spherical zincsilicate
bioglass: “imageable beads” for transarterial embolization,
J. Biomater. Appl. 2014, 29, 566–581
CrossrefGoogle Scholar
[34] El-Kady A.M., Ali A.F., Fabrication and characterization of ZnO
modified bioactive glass nanoparticles, Ceram. Int. 2012, 38,
1195–1204
Google Scholar
[35] Anand V., Singh K.J., Kaur K., Evaluation of zinc and magnesium
doped 45S5 mesoporous bioactive glass system for the
growth of hydroxyl apatite layer, J. Non Cryst. Solids 2014,
406, 88–94
CrossrefGoogle Scholar
[36] Kaur G., Pickrell G., Kimsawatde G., Homa D., Allbee H.A., Sriranganathan
N., Synthesis, cytotoxicity, and hydroxyapatite
formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2-
B2O3-ZnO bioactive glasses, Sci. Rep. 2014, 4, 4392
Google Scholar
[37] Aina V., Malavasi G., Fiorio P.A., Munaron L., Morterra C., Zinccontaining
bioactive glasses: surface reactivity and behaviour
towards endothelial cells, Acta Biomater. 2009, 5, 1211–1222
CrossrefGoogle Scholar
[38] Srivastava A.K., Pyare R., Characterization of ZnO substituted
45S5 Bioactive Glasses and Glass - Ceramics, J. Mater. Sci.
Res. 2012, 1, 207–220
Google Scholar
[39] Haimi S., Gorianc G., Moimas L., Lindroos B., Huhtala H., Räty
S., et al., Characterization of zinc-releasing three-dimensional
bioactive glass scaffolds and their effect on human adipose
stem cell proliferation and osteogenic differentiation, Acta
Biomater 2009, 5, 3122–3131
CrossrefGoogle Scholar
[40] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., Hussain
R., In vitro study of nano-sized zinc doped bioactive glass,
Mater. Chem. Phys. 2013, 137, 1031–1038
CrossrefGoogle Scholar
[41] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Pedone
A., Segre U., et al., Properties of zinc releasing surfaces for
clinical applications. J. Biomater. Appl. 2008, 22, 505–526
Google Scholar
[42] Lusvardi G., Zaffe D., Menabue L., Bertoldi C., Malavasi G.,
Consolo U., In vitro and in vivo behaviour of zinc-doped phosphosilicate
glasses, Acta Biomater. 2009, 5, 419–428
CrossrefGoogle Scholar
[43] Cassingham N.J., Stennett M.C., Bingham P.A., Hyatt N.C.,
Aquilanti G., The Structural Role of Zn in Nuclear Waste
Glasses, Int. J. Appl. Glas. Sci. 2011, 2, 343–353
CrossrefGoogle Scholar
[44] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K.,
et al., Role of glass structure in defining the chemical dissolution
behavior, bioactivity and antioxidant properties of zinc
and strontium co-doped alkali-free phosphosilicate glasses,
Acta Biomater. 2014, 10, 3264–3278
CrossrefGoogle Scholar
[45] Kapoor S., Goel A., Correia A.F., Pascual M.J., Lee H., Kim
H., Ferreira J.M.F., Influence of ZnO/MgO substitution on sintering,
crystallization, and bio-activity of alkali-free glassceramics,
Mater. Sci. Eng. C 2015, In Press
Google Scholar
[46] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M.,
McKay I.J., et al., “Smart” acid-degradable zinc-releasing silicate
glasses, Mater. Lett. 2014, 126, 278–280
CrossrefGoogle Scholar
[47] Kamitakahara M., Ohtsuki C., Inada H., Tanihara M., Miyazaki
T., Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2
glass-ceramics containing apatite and wollastonite, Acta Biomater.
2006, 2, 467–471
CrossrefGoogle Scholar
[48] Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-Regí
M., Substitutions of cerium, galliumand zinc in ordered mesoporous
bioactive glasses., Acta Biomater. 2011, 7, 3452–3458
CrossrefGoogle Scholar
[49] Balamurugan A., Balossier G., Kannan S., Michel J., Rebelo
A.H.S., Ferreira J.M.F., Development and in vitro characterization
of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass, Acta Biomater.
2007, 3, 255–262
CrossrefGoogle Scholar
[50] Oki A., Parveen B., Hossain S., Adeniji S., Donahue H., Preparation
and in vitro bioactivity of zinc containing sol-gel-derived
bioglass materials, J. Biomed. Mater. Res. A, 2004, 69, 216–
221
CrossrefGoogle Scholar
[51] Bini M., Grandi S., Capsoni D., Mustarelli P., Saino E., Visai L.,
SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without
ZnO: Relationships among Composition, Microstructure, and
Bioactivity, J. Phys. Chem. C 2009, 113, 8821–8828
CrossrefGoogle Scholar
[52] Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., Bloise
N, et al., In vitro calcified matrix deposition by human osteoblasts
onto a zinc-containing bioactive glass, Eur. Cell.
Mater. 2011, 21, 59–72
Google Scholar
[53] Singh R.K., Srinivasan A., Bioactivity of SiO2–CaO–P2O5–
Na2O glasses containing zinc–iron oxide, Appl. Surf. Sci.
2010, 256, 1725–1730
CrossrefGoogle Scholar
[54] Erol M., Özyuguran A., Çelebican Ö., Synthesis, Characterization,
and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn-
Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 2010,
33, 1066–1074
CrossrefGoogle Scholar
[55] Du R.L., Chang J., Ni S.Y., ZhaiW.Y.,Wang J.Y., Characterization
and in vitro bioactivity of zinc-containing bioactive glass and
glass-ceramics, J. Biomater. Appl. 2006, 20, 341–360
CrossrefGoogle Scholar
[56] Du R.L., Chang J., The influence of Zn on the deposition of HA
on sol-gel derived bioactive glass, Biomed. Mater. Eng. 2006,
16, 229–236
Google Scholar
[57] Veres R., Vulpoi A., Magyari K., Ciuce C., Simon V., Synthesis,
characterisation and in vitro testing of macroporous zinc containing
scaffolds obtained by sol–gel and sacrificial template
methods, J. Non Cryst. Solids, 2013, 373-374, 57–64
Google Scholar
[58] Wang X., Li X., Ito A., Sogo Y., Synthesis and characterization
of hierarchicallymacroporous and mesoporous CaO-MO-SiO2-
P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater.
2011, 7, 3638–3644
CrossrefGoogle Scholar
[59] Looney M., O’Shea H., Boyd D., Preliminary evaluation of therapeutic
ion release from Sr-doped zinc-silicate glass ceramics,
J. Biomater. Appl. 2013, 27, 511–524
CrossrefGoogle Scholar
[60] Soundrapandian C.,Mahato A., Kundu B., Datta S., Sa B., Basu
D., Development and effect of different bioactive silicate glass
scaffolds: In vitro evaluation for use as a bone drug delivery
system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12
CrossrefGoogle Scholar
[61] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L.,
Vallet-Regi M., Mesoporous bioactive scaffolds prepared with
cerium-, gallium- and zinc-containing glasses, Acta Biomater.
2013, 9, 4836–4844
CrossrefGoogle Scholar
[62] Shruti S., Salinas A.J., In vitro antibacterial capacity and cytocompatibility,
J. Mater. Chem. B 2014, 2, 4836–4847
Google Scholar
[63] Oh S.A., Kim S.H., Won J.E., Kim J.J., Shin U.S., Kim H.W., Effects
on growth and osteogenic differentiation of mesenchymal
stem cells by the zinc-added sol-gel bioactive glass granules,
J. Tissue Eng. 2011, 2010, 475260-475270
Google Scholar
[64] Boyd D., Carroll G., Towler M.R., Freeman C., Farthing P., Brook
I.M., Preliminary investigation of novel bone graft substitutes
based on strontium-calcium-zinc-silicate glasses, J. Mater.
Sci. Mater. Med. 2009, 20, 413–420
CrossrefGoogle Scholar
[65] Murphy S., Boyd D., Moane S., Bennett M., The effect of composition
on ion release from Ca-Sr-Na-Zn-Si glass bone grafts,
J. Mater. Sci. Mater. Med. 2009, 20, 2207–2214
CrossrefGoogle Scholar
[66] Xie D., Feng D., Chung I.D., Eberhardt A.W., A hybrid zinc–
calcium–silicate polyalkenoate bone cement, Biomaterials
2003, 24, 2749–2757
CrossrefGoogle Scholar
[67] Boyd D., Clarkin O.M., Wren A.W., Towler M.R., Zinc-based
glass polyalkenoate cements with improved setting times and
mechanical properties, Acta Biomater. 2008, 4, 425–431
CrossrefGoogle Scholar
[68] Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G., The antibacterial
effects of zinc ion migration from zinc-based glass
polyalkenoate cements, J. Mater. Sci. Mater. Med. 2006, 17,
489–494
CrossrefGoogle Scholar
[69] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G.,
Benefits and drawbacks of zinc in glass ionomer bone cements,
Biomed. Mater. 2011, 6, 045007
CrossrefGoogle Scholar
[70] Zhang J., Park Y.D., Bae W.J., El-Fiqi A., Shin S.H., Lee E.J., et
al., Effects of bioactive cements incorporating zinc-bioglass
nanoparticles on odontogenic and angiogenic potential of human
dental pulp cells, J. Biomater. Appl. 2015, 29, 954–64
CrossrefGoogle Scholar
[71] Boyd D., Towler M.R., Law R.V., Hill R.G., An investigation into
the structure and reactivity of calcium-zinc-silicate ionomer
glasses using MAS-NMR spectroscopy, J. Mater. Sci. Mater.
Med. 2006, 17, 397-402
CrossrefGoogle Scholar
[72] Zhang X., Werner-Zwanziger U., Boyd D., Compositionstructure-
property relationships for non-classical ionomer
cements formulated with zinc-boron germanium-based
glasses, J. Biomater. Appl. 2015, 29, 1203-17
CrossrefGoogle Scholar
[73] Lynch E., Brauer D.S., Karpukhina N., Gillam D.G., Hill R.G.,
Multi-component bioactive glasses of varying fluoride content
for treating dentin hypersensitivity, Dent.Mater. 2012, 28,
168-178
CrossrefGoogle Scholar
[74] Esteban-Tejeda L., Díaz L.A., Prado C., Cabal B., Torrecillas R.,
Moya J.S., Calciumand zinc containing bactericidal glass coatings
for biomedical metallic substrates, Int. J. Mol. Sci. 2014,
15, 13030–13044
CrossrefGoogle Scholar
[75] Lotfibhakshaiesh N., Brauer D.S., Hill R.G., Bioactive glass engineered
coatings for Ti6Al4V alloys: Influence of strontium
substitution for calcium on sintering behaviour, J. Non-Cryst.
Solids 2010, 356, 2583-90
CrossrefGoogle Scholar
[76] Dietzel A., Die Kationenfeldskärten und ihre Beziehungen
zu Entglasungsvorgängen, zur Verbindungsbildung und zu denSchmelzpunkten von Silicaten, Z. Electrochem. Angew. P.
1942, 48, 9-23.
Google Scholar
[77] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Synthesis,
characteriaztation and molecular dynamics simulation
of Na2O-CaO-SiO2-ZnO glasses, J. Phys. Chem. B 2002, 106,
9753-60.
CrossrefGoogle Scholar
[78] Wallace K., Design of novel bioactive glass compositions, PhD
thesis, University of Limerick, Limerick, Ireland, 2000
Google Scholar
[79] McMillan P., Glass-Ceramics., London, Academic Press, 1964
Google Scholar
[80] Grand M. Le., Ramos A.Y., Calas G., Galoisy L., Ghaleb D.,
Pacaud F., Zinc environment in aluminoborosilicate glasses
by Zn K-edge extended x-ray absorption fine structure spectroscopy,
J. Mater. Res. 2011, 15, 2015–2019
Google Scholar
[81] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M.,
Gatti S., et al., Early stage reactivity and in vitro behavior of
silica-based bioactive glasses and glass-ceramics, J. Mater.
Sci. Mater. Med. 2009, 20, 75–87
CrossrefGoogle Scholar
[82] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L.,
Morterra C., et al., Cytotoxicity of zinc-containing bioactive
glasses in contact with human osteoblasts, Chem. Biol. Interact.
2007, 167, 207–218
Google Scholar
[83] Lao J., Nedelec J., Jallot E., Controlled Bioactivity in Zinc-Doped
Sol - Gel-Derived Binary Bioactive Glasses, J. Phys. Chem.
2008, 112, 13663–13667
Google Scholar
[84] Kokubo T., Takadama H., Howuseful is SBF in predicting in vivo
bone bioactivity?, Biomaterials 2006, 27, 2907–2915
CrossrefGoogle Scholar
[85] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory
Effect ofMagnesiumand Zinc on Crystallization Kinetics
of Hydroxyapatite (0001) Face, J. Phys. Chem. B 2000, 104,
4189–4194
Google Scholar
[86] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using
the network connectivity or split network models, J. Non
Cryst. Solids 2011, 357, 3884–3887
CrossrefGoogle Scholar
[87] Leek J.C., Keen C.L., Vogler J.B., Golub M.S., Hurley L.S., Hendrickx
A.G., et al., Long-term marginal zinc deprivation in rhesus
monkeys. IV. Effects on skeletal growth and mineralizatio,
Am. J. Clin. Nutr. 1988, 47, 889–895
Google Scholar
[88] Nagata M., Kayanoma M., Takahashi T., Kaneko T., Hara H.,
Marginal zinc deficiency in pregnant rats impairs bone matrix
formation and bone mineralization in their neonates, Biol.
Trace. Elem. Res. 2011, 142, 190–199
CrossrefGoogle Scholar
[89] Hadley K.B., Newman S.M., Hunt J.R., Dietary zinc reduces
osteoclast resorption activities and increases markers of osteoblast
differentiation,matrixmaturation, and mineralization
in the long bones of growing rats, J. Nutr. Biochem. 2010, 21,
297–303
CrossrefGoogle Scholar
[90] Dimai H.P., Hall S.L., Stilt-Coflng B., Farley J.R., Skeletal response
to dietary zinc in adult female mice, Calcif. Tissue Int.
1998, 62, 309–315
CrossrefGoogle Scholar
[91] Jones L., Thomsen J.S., Barlach J., Mosekilde L., Melsen B., No
influence of alimentary zinc on the healing of calvarial defects
filled with osteopromotive substances in rats, Eur. J. Orthod.
2010, 32, 124–130
CrossrefGoogle Scholar
[92] Hyun T.H., Barrett-Connor E., Milne D.B., Zinc intakes and
plasma concentrations in men with osteoporosis: the Rancho
Bernardo Study, Am. J. Clin. Nutr. 2004, 80, 715–721
Google Scholar
[93] Bouglé D.L., Sabatier J.P., Guaydier-Souquières G., Guillon-
Metz F., Laroche D., Jauzac P., et al., Zinc status and bone mineralisation
in adolescent girls, J. Trace Elem. Med. Biol. 2004,
18, 17–21
CrossrefGoogle Scholar
[94] Nagata M., Lönnerdal B., Role of zinc in cellular zinc traflcking
and mineralization in a murine osteoblast-like cell line, J. Nutr.
Biochem. 2011, 22, 172–178
CrossrefGoogle Scholar
[95] Liang D., Yang M., Guo B., Cao J., Yang L., Guo X., Zinc upregulates
the expression of osteoprotegerin in mouse osteoblasts
MC3T3-E1 through PKC/MAPK pathways, Biol. Trace Elem. Res.
2012, 146, 340–348
CrossrefGoogle Scholar
[96] Yamaguchi M., Weitzmann M.N., Zinc stimulates osteoblastogenesis
and suppresses osteoclastogenesis by antagonizing
NF-kB activation, Mol. Cell. Biochem. 2011, 355, 179–186
CrossrefGoogle Scholar
[97] Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., Teitelbaum
S.L., TNF-alpha induces osteoclastogenesis by direct
stimulation of macrophages exposed to permissive levels of
RANK ligand, J. Clin. Invest. 2000, 106, 1481–1488
CrossrefGoogle Scholar
[98] Kwun I.S., Cho Y.E., Lomeda R.A.R., Shin H.I., Choi J.Y., Kang
Y.H., et al., Zinc deficiency suppresses matrix mineralization
and retards osteogenesis transiently with catch-up possibly
through Runx 2 modulation, Bone, 2010, 46, 732–741
CrossrefGoogle Scholar
[99] Nikolic-Hughes I., O’Brien P.J., Herschlag D., Alkaline phosphatase
catalysis is ultrasensitive to charge sequestered between
the active site zinc ions, J. Am. Chem. Soc. 2005, 127,
9314–9315
CrossrefGoogle Scholar
[100] Gerhardt L.C., Boccaccini A.R., Bioactive Glass and Glass-
Ceramic Scaffolds for Bone Tissue Engineering, Materials
2010, 3, 3867–3910
CrossrefGoogle Scholar
[101] Ritger P.L., Peppas N.A., A simple equation for description
of solute release II. Fickian and anomalous release from
swellable devices, J. Control. Release 1987, 5, 37–42
CrossrefGoogle Scholar
[102] Vallet-Regí M., Balas F., Arcos D., Mesoporous materials for
drug delivery, Angew. Chem. Int. Ed. Engl. 2007, 46, 7548–
7558
CrossrefGoogle Scholar
[103] Smith D.C., A new dental cement, Br. Dent. J. 1968, 125, 381-
384
Google Scholar
[104] Wilson A.D., Kent B.E., The glass-ionomer cement: a new
translucent cement for dentistry, J. Appl. Chem. Biotech. 1971,
21, 313
Google Scholar
[105] Peters W.J., Jackson R.W., Smith D.C., Studies of the Stability
and Toxicity of Zinc Polyacrylate (polycarboxylate) Cements
(PAZ)*, J. Biomed. Mater. Res. 1974, 8, 53–60
CrossrefGoogle Scholar
[106] Darling M., Hill R., Novel polyalkenoate (glass-ionomer) dental
cements based on zinc silicate glasses, Biomaterials 1994, 15,
299–306
CrossrefGoogle Scholar
[107] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W.,
Clarkin O.M., et al., Evaluation of two novel aluminum-free,
zinc-based glass polyalkenoate cements as alternatives to
PMMA bone cement for use in vertebroplasty and balloon
kyphoplasty, J. Mater. Sci. Mater. Med. 2010, 21, 59–66
CrossrefGoogle Scholar
[108] Qiao Y., ZhangW., Tian P., Meng F., Zhu H., Jiang X., et al., Stimulation
of bone growth following zinc incorporation into biomaterials,
Biomaterials 2014, 35, 6882–6897
CrossrefGoogle Scholar
Comments (0)