Jump to ContentJump to Main Navigation
Show Summary Details
More options …

New Journal!

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications

Preethi Balasubramanian / Leonie A. Strobel
  • Department of Hand, Plastic and Reconstructive Surgery - Burn Center, University of Heidelberg, Ludwigshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrich Kneser
  • Department of Hand, Plastic and Reconstructive Surgery - Burn Center, University of Heidelberg, Ludwigshafen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aldo R. Boccaccini
Published Online: 2015-07-29 | DOI: https://doi.org/10.1515/bglass-2015-0006

Abstract

Zinc is a vital and beneficial trace element found in the human body. Though found in small proportions, zinc performs a variety of functions in relation to the immune system, cell division, fertility and the body growth and maintenance. In particular, zinc is proven to be a necessary element for the formation, mineralization, development and maintenance of healthy bones. Considering this attractive attributes of zinc, recent research has widely focused on using zinc along with silicate-based bioactive glasses for bone tissue engineering applications. This paper reviews relevant literature discussing the significance of zinc in the human body, along with its ability to enhance antibacterial effects, bioactivity and distinct physical, structural and mechanical properties of bioactive glasses. In this context, even if the present analysis is not meant to be exhaustive and only representative studies are discussed, literature results confirm that it is essential to understand the properties of zinc-containing bioactive glasses with respect to their in vitro biological behavior, possible cytotoxic effects and degradation characteristics to be able to effectively apply these glasses in bone regeneration strategies. Topics attracting increasing research efforts in this field are elaborated in detail in this review, including a summary of the structural, physical, biological and mechanical properties of zinc-containing bioactive glasses. This paper also presents an overview of the various applications in which zinc-containing bioactive glasses are considered for use as bone tissue scaffolds, bone filling granules, bioactive coatings and bone cements, and advances and remaining challenges are highlighted.

Keywords: Bioactive glasses; Zinc; Degradation; Dissolution; Bone Tissue Engineering

References

  • [1] Salgado A.J., Coutinho O.P., Reis RL., Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 2004, 4, 743–765 CrossrefGoogle Scholar

  • [2] Shrivats A.R., McDermott M.C., Hollinger J.O., Bone tissue engineering: state of the union, Drug Discov. Today 2014, 19, 781–786 CrossrefGoogle Scholar

  • [3] Gomes S., Leonor I.B., Mano J.F., Reis R.L., Kaplan D.L., Natural and genetically engineered proteins for tissue engineering, Prog. Polym. Sci. 2012, 37, 1–17 CrossrefGoogle Scholar

  • [4] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med. 2006, 17, 967–978 CrossrefGoogle Scholar

  • [5] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 1971, 5, 117–141 CrossrefGoogle Scholar

  • [6] Hench L.L., Polak J.M., Third-generation biomedicalmaterials. Science 2002, 295, 1014–1017 CrossrefGoogle Scholar

  • [7] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for in situ tissue regeneration, J. Biomater. Sci. Polym. Ed. 2004, 15, 543–562 CrossrefGoogle Scholar

  • [8] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences, Tissue Eng. Part B Rev. 2010, 16, 199–207 CrossrefGoogle Scholar

  • [9] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta. Biomater. 2013, 9, 4457–4486 CrossrefGoogle Scholar

  • [10] Gomez-Vega J., Saiz E., Tomsia A., Marshall G., Marshall S., Bioactive glass coatings with hydroxyapatite and Bioglassr particles on Ti-based implants. 1. Processing, Biomaterials 2000, 21, 105–111 Google Scholar

  • [11] Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz- Herrera J.A., Ochoa I., et al., The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds, Biomaterials 2011, 32, 4096–4108 CrossrefGoogle Scholar

  • [12] Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B., Bonewald L.F., et al., Bioactive glass in tissue engineering, Acta Biomater. 2011, 7, 2355–2373 CrossrefGoogle Scholar

  • [13] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 2006, 27, 3413–3431 CrossrefGoogle Scholar

  • [14] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774 CrossrefGoogle Scholar

  • [15] Brown K.H.,Wuehler S.E., Peerson J.M., The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency, Food Nutr. Bull. 2001, 22, 113–125 CrossrefGoogle Scholar

  • [16] Chasapis C.T., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E., Zinc and human health: an update, Arch. Toxicol. 2012, 86, 521–534 CrossrefGoogle Scholar

  • [17] Yamaguchi M., Role of nutritional zinc in the prevention of osteoporosis, Mol. Cell. Biochem. 2010, 338, 241–254 CrossrefGoogle Scholar

  • [18] Aydin S.B., Hanley L., Antibacterial activity of dental composites containing zinc oxide nanoparticles, J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 22–31 Google Scholar

  • [19] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolism in rats: Increases in alkaline phosphatase activity and DNA content. Biochem Pharmacol 1986, 35, 773–777 CrossrefGoogle Scholar

  • [20] Ito A., Kawamura H., Otsuka M., Ikeuchi M., Ohgushi H., Ishikawa K., et al., Zinc-releasing calcium phosphate for stimulating bone formation, Mater. Sci. Eng. C 2002, 22, 21–25 CrossrefGoogle Scholar

  • [21] Stefanidou M., Maravelias C., Dona A., Spiliopoulou C., Zinc: a multipurpose trace element, Arch. Toxicol. 2006, 80, 1–9 CrossrefGoogle Scholar

  • [22] Vallee B.L., Falchuk K.H., The biochemical basis of zinc physiology. Physiol. Rev. 1993, 73, 79–118 Google Scholar

  • [23] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S., Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen. 2007, 15, 2-16 CrossrefGoogle Scholar

  • [24] Haumont S., Distribution of zinc in bone tissue, J. Histochem. Cytochem. 1961, 9, 141-145 CrossrefGoogle Scholar

  • [25] Murray E.J., Messer H.H., Turnover of bone zinc during normal and accelerated bone loss in rats, J. Nutr. 1981, 111, 1641–1647 Google Scholar

  • [26] Hsieh H.S., Navia J.M., Zinc deficiency and bone formation in guinea pig alveolar implants, J. Nutr. 1980, 110, 1581–1588 Google Scholar

  • [27] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 1984, 114, 1860–1863 CrossrefGoogle Scholar

  • [28] Aitken J.M., Factors affecting the distribution of zinc in the human skeleton, Calcif. Tissue Res. 1976, 20, 23–30 CrossrefGoogle Scholar

  • [29] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on bone formation in tissue culture, Biochem. Pharmacol. 1987, 36, 4007–4012 CrossrefGoogle Scholar

  • [30] Yamaguchi M., Role of Zinc in Bone Formation and Bone Resorption, 1998, 135, 119–135 Google Scholar

  • [31] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S., O’Shea H., et al., Composition–structure–property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: Potential components for nerve guidance conduits, Mater. Sci. Eng. C 2011, 31, 669–676 CrossrefGoogle Scholar

  • [32] Sabbatini M., Boccafoschi F., Bosetti M., Cannas M., Adhesion and differentiation of neuronal cells on Zn-doped bioactive glasses, J. Biomater. Appl. 2014, 28, 708–718 CrossrefGoogle Scholar

  • [33] Hasan M.S., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zincsilicate bioglass: “imageable beads” for transarterial embolization, J. Biomater. Appl. 2014, 29, 566–581 CrossrefGoogle Scholar

  • [34] El-Kady A.M., Ali A.F., Fabrication and characterization of ZnO modified bioactive glass nanoparticles, Ceram. Int. 2012, 38, 1195–1204 Google Scholar

  • [35] Anand V., Singh K.J., Kaur K., Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer, J. Non Cryst. Solids 2014, 406, 88–94 CrossrefGoogle Scholar

  • [36] Kaur G., Pickrell G., Kimsawatde G., Homa D., Allbee H.A., Sriranganathan N., Synthesis, cytotoxicity, and hydroxyapatite formation in 27-Tris-SBF for sol-gel based CaO-P2O5-SiO2- B2O3-ZnO bioactive glasses, Sci. Rep. 2014, 4, 4392 Google Scholar

  • [37] Aina V., Malavasi G., Fiorio P.A., Munaron L., Morterra C., Zinccontaining bioactive glasses: surface reactivity and behaviour towards endothelial cells, Acta Biomater. 2009, 5, 1211–1222 CrossrefGoogle Scholar

  • [38] Srivastava A.K., Pyare R., Characterization of ZnO substituted 45S5 Bioactive Glasses and Glass - Ceramics, J. Mater. Sci. Res. 2012, 1, 207–220 Google Scholar

  • [39] Haimi S., Gorianc G., Moimas L., Lindroos B., Huhtala H., Räty S., et al., Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation, Acta Biomater 2009, 5, 3122–3131 CrossrefGoogle Scholar

  • [40] Goh Y.F., Alshemary A.Z., Akram M., Abdul Kadir M.R., Hussain R., In vitro study of nano-sized zinc doped bioactive glass, Mater. Chem. Phys. 2013, 137, 1031–1038 CrossrefGoogle Scholar

  • [41] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Pedone A., Segre U., et al., Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 2008, 22, 505–526 Google Scholar

  • [42] Lusvardi G., Zaffe D., Menabue L., Bertoldi C., Malavasi G., Consolo U., In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses, Acta Biomater. 2009, 5, 419–428 CrossrefGoogle Scholar

  • [43] Cassingham N.J., Stennett M.C., Bingham P.A., Hyatt N.C., Aquilanti G., The Structural Role of Zn in Nuclear Waste Glasses, Int. J. Appl. Glas. Sci. 2011, 2, 343–353 CrossrefGoogle Scholar

  • [44] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K., et al., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater. 2014, 10, 3264–3278 CrossrefGoogle Scholar

  • [45] Kapoor S., Goel A., Correia A.F., Pascual M.J., Lee H., Kim H., Ferreira J.M.F., Influence of ZnO/MgO substitution on sintering, crystallization, and bio-activity of alkali-free glassceramics, Mater. Sci. Eng. C 2015, In Press Google Scholar

  • [46] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J., et al., “Smart” acid-degradable zinc-releasing silicate glasses, Mater. Lett. 2014, 126, 278–280 CrossrefGoogle Scholar

  • [47] Kamitakahara M., Ohtsuki C., Inada H., Tanihara M., Miyazaki T., Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite, Acta Biomater. 2006, 2, 467–471 CrossrefGoogle Scholar

  • [48] Salinas A.J., Shruti S., Malavasi G., Menabue L., Vallet-Regí M., Substitutions of cerium, galliumand zinc in ordered mesoporous bioactive glasses., Acta Biomater. 2011, 7, 3452–3458 CrossrefGoogle Scholar

  • [49] Balamurugan A., Balossier G., Kannan S., Michel J., Rebelo A.H.S., Ferreira J.M.F., Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass, Acta Biomater. 2007, 3, 255–262 CrossrefGoogle Scholar

  • [50] Oki A., Parveen B., Hossain S., Adeniji S., Donahue H., Preparation and in vitro bioactivity of zinc containing sol-gel-derived bioglass materials, J. Biomed. Mater. Res. A, 2004, 69, 216– 221 CrossrefGoogle Scholar

  • [51] Bini M., Grandi S., Capsoni D., Mustarelli P., Saino E., Visai L., SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without ZnO: Relationships among Composition, Microstructure, and Bioactivity, J. Phys. Chem. C 2009, 113, 8821–8828 CrossrefGoogle Scholar

  • [52] Saino E., Grandi S., Quartarone E., Maliardi V., Galli D., Bloise N, et al., In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass, Eur. Cell. Mater. 2011, 21, 59–72 Google Scholar

  • [53] Singh R.K., Srinivasan A., Bioactivity of SiO2–CaO–P2O5– Na2O glasses containing zinc–iron oxide, Appl. Surf. Sci. 2010, 256, 1725–1730 CrossrefGoogle Scholar

  • [54] Erol M., Özyuguran A., Çelebican Ö., Synthesis, Characterization, and In Vitro Bioactivity of Sol-Gel-Derived Zn, Mg, and Zn- Mg Co-Doped Bioactive Glasses, Chem. Eng. Technol. 2010, 33, 1066–1074 CrossrefGoogle Scholar

  • [55] Du R.L., Chang J., Ni S.Y., ZhaiW.Y.,Wang J.Y., Characterization and in vitro bioactivity of zinc-containing bioactive glass and glass-ceramics, J. Biomater. Appl. 2006, 20, 341–360 CrossrefGoogle Scholar

  • [56] Du R.L., Chang J., The influence of Zn on the deposition of HA on sol-gel derived bioactive glass, Biomed. Mater. Eng. 2006, 16, 229–236 Google Scholar

  • [57] Veres R., Vulpoi A., Magyari K., Ciuce C., Simon V., Synthesis, characterisation and in vitro testing of macroporous zinc containing scaffolds obtained by sol–gel and sacrificial template methods, J. Non Cryst. Solids, 2013, 373-374, 57–64 Google Scholar

  • [58] Wang X., Li X., Ito A., Sogo Y., Synthesis and characterization of hierarchicallymacroporous and mesoporous CaO-MO-SiO2- P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds, Acta Biomater. 2011, 7, 3638–3644 CrossrefGoogle Scholar

  • [59] Looney M., O’Shea H., Boyd D., Preliminary evaluation of therapeutic ion release from Sr-doped zinc-silicate glass ceramics, J. Biomater. Appl. 2013, 27, 511–524 CrossrefGoogle Scholar

  • [60] Soundrapandian C.,Mahato A., Kundu B., Datta S., Sa B., Basu D., Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12 CrossrefGoogle Scholar

  • [61] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L., Vallet-Regi M., Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses, Acta Biomater. 2013, 9, 4836–4844 CrossrefGoogle Scholar

  • [62] Shruti S., Salinas A.J., In vitro antibacterial capacity and cytocompatibility, J. Mater. Chem. B 2014, 2, 4836–4847 Google Scholar

  • [63] Oh S.A., Kim S.H., Won J.E., Kim J.J., Shin U.S., Kim H.W., Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules, J. Tissue Eng. 2011, 2010, 475260-475270 Google Scholar

  • [64] Boyd D., Carroll G., Towler M.R., Freeman C., Farthing P., Brook I.M., Preliminary investigation of novel bone graft substitutes based on strontium-calcium-zinc-silicate glasses, J. Mater. Sci. Mater. Med. 2009, 20, 413–420 CrossrefGoogle Scholar

  • [65] Murphy S., Boyd D., Moane S., Bennett M., The effect of composition on ion release from Ca-Sr-Na-Zn-Si glass bone grafts, J. Mater. Sci. Mater. Med. 2009, 20, 2207–2214 CrossrefGoogle Scholar

  • [66] Xie D., Feng D., Chung I.D., Eberhardt A.W., A hybrid zinc– calcium–silicate polyalkenoate bone cement, Biomaterials 2003, 24, 2749–2757 CrossrefGoogle Scholar

  • [67] Boyd D., Clarkin O.M., Wren A.W., Towler M.R., Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties, Acta Biomater. 2008, 4, 425–431 CrossrefGoogle Scholar

  • [68] Boyd D., Li H., Tanner D.A., Towler M.R., Wall J.G., The antibacterial effects of zinc ion migration from zinc-based glass polyalkenoate cements, J. Mater. Sci. Mater. Med. 2006, 17, 489–494 CrossrefGoogle Scholar

  • [69] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G., Benefits and drawbacks of zinc in glass ionomer bone cements, Biomed. Mater. 2011, 6, 045007 CrossrefGoogle Scholar

  • [70] Zhang J., Park Y.D., Bae W.J., El-Fiqi A., Shin S.H., Lee E.J., et al., Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells, J. Biomater. Appl. 2015, 29, 954–64 CrossrefGoogle Scholar

  • [71] Boyd D., Towler M.R., Law R.V., Hill R.G., An investigation into the structure and reactivity of calcium-zinc-silicate ionomer glasses using MAS-NMR spectroscopy, J. Mater. Sci. Mater. Med. 2006, 17, 397-402 CrossrefGoogle Scholar

  • [72] Zhang X., Werner-Zwanziger U., Boyd D., Compositionstructure- property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses, J. Biomater. Appl. 2015, 29, 1203-17 CrossrefGoogle Scholar

  • [73] Lynch E., Brauer D.S., Karpukhina N., Gillam D.G., Hill R.G., Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity, Dent.Mater. 2012, 28, 168-178 CrossrefGoogle Scholar

  • [74] Esteban-Tejeda L., Díaz L.A., Prado C., Cabal B., Torrecillas R., Moya J.S., Calciumand zinc containing bactericidal glass coatings for biomedical metallic substrates, Int. J. Mol. Sci. 2014, 15, 13030–13044 CrossrefGoogle Scholar

  • [75] Lotfibhakshaiesh N., Brauer D.S., Hill R.G., Bioactive glass engineered coatings for Ti6Al4V alloys: Influence of strontium substitution for calcium on sintering behaviour, J. Non-Cryst. Solids 2010, 356, 2583-90 CrossrefGoogle Scholar

  • [76] Dietzel A., Die Kationenfeldskärten und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu denSchmelzpunkten von Silicaten, Z. Electrochem. Angew. P. 1942, 48, 9-23. Google Scholar

  • [77] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Synthesis, characteriaztation and molecular dynamics simulation of Na2O-CaO-SiO2-ZnO glasses, J. Phys. Chem. B 2002, 106, 9753-60. CrossrefGoogle Scholar

  • [78] Wallace K., Design of novel bioactive glass compositions, PhD thesis, University of Limerick, Limerick, Ireland, 2000 Google Scholar

  • [79] McMillan P., Glass-Ceramics., London, Academic Press, 1964 Google Scholar

  • [80] Grand M. Le., Ramos A.Y., Calas G., Galoisy L., Ghaleb D., Pacaud F., Zinc environment in aluminoborosilicate glasses by Zn K-edge extended x-ray absorption fine structure spectroscopy, J. Mater. Res. 2011, 15, 2015–2019 Google Scholar

  • [81] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M., Gatti S., et al., Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics, J. Mater. Sci. Mater. Med. 2009, 20, 75–87 CrossrefGoogle Scholar

  • [82] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L., Morterra C., et al., Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts, Chem. Biol. Interact. 2007, 167, 207–218 Google Scholar

  • [83] Lao J., Nedelec J., Jallot E., Controlled Bioactivity in Zinc-Doped Sol - Gel-Derived Binary Bioactive Glasses, J. Phys. Chem. 2008, 112, 13663–13667 Google Scholar

  • [84] Kokubo T., Takadama H., Howuseful is SBF in predicting in vivo bone bioactivity?, Biomaterials 2006, 27, 2907–2915 CrossrefGoogle Scholar

  • [85] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory Effect ofMagnesiumand Zinc on Crystallization Kinetics of Hydroxyapatite (0001) Face, J. Phys. Chem. B 2000, 104, 4189–4194 Google Scholar

  • [86] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non Cryst. Solids 2011, 357, 3884–3887 CrossrefGoogle Scholar

  • [87] Leek J.C., Keen C.L., Vogler J.B., Golub M.S., Hurley L.S., Hendrickx A.G., et al., Long-term marginal zinc deprivation in rhesus monkeys. IV. Effects on skeletal growth and mineralizatio, Am. J. Clin. Nutr. 1988, 47, 889–895 Google Scholar

  • [88] Nagata M., Kayanoma M., Takahashi T., Kaneko T., Hara H., Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates, Biol. Trace. Elem. Res. 2011, 142, 190–199 CrossrefGoogle Scholar

  • [89] Hadley K.B., Newman S.M., Hunt J.R., Dietary zinc reduces osteoclast resorption activities and increases markers of osteoblast differentiation,matrixmaturation, and mineralization in the long bones of growing rats, J. Nutr. Biochem. 2010, 21, 297–303 CrossrefGoogle Scholar

  • [90] Dimai H.P., Hall S.L., Stilt-Coflng B., Farley J.R., Skeletal response to dietary zinc in adult female mice, Calcif. Tissue Int. 1998, 62, 309–315 CrossrefGoogle Scholar

  • [91] Jones L., Thomsen J.S., Barlach J., Mosekilde L., Melsen B., No influence of alimentary zinc on the healing of calvarial defects filled with osteopromotive substances in rats, Eur. J. Orthod. 2010, 32, 124–130 CrossrefGoogle Scholar

  • [92] Hyun T.H., Barrett-Connor E., Milne D.B., Zinc intakes and plasma concentrations in men with osteoporosis: the Rancho Bernardo Study, Am. J. Clin. Nutr. 2004, 80, 715–721 Google Scholar

  • [93] Bouglé D.L., Sabatier J.P., Guaydier-Souquières G., Guillon- Metz F., Laroche D., Jauzac P., et al., Zinc status and bone mineralisation in adolescent girls, J. Trace Elem. Med. Biol. 2004, 18, 17–21 CrossrefGoogle Scholar

  • [94] Nagata M., Lönnerdal B., Role of zinc in cellular zinc traflcking and mineralization in a murine osteoblast-like cell line, J. Nutr. Biochem. 2011, 22, 172–178 CrossrefGoogle Scholar

  • [95] Liang D., Yang M., Guo B., Cao J., Yang L., Guo X., Zinc upregulates the expression of osteoprotegerin in mouse osteoblasts MC3T3-E1 through PKC/MAPK pathways, Biol. Trace Elem. Res. 2012, 146, 340–348 CrossrefGoogle Scholar

  • [96] Yamaguchi M., Weitzmann M.N., Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF-kB activation, Mol. Cell. Biochem. 2011, 355, 179–186 CrossrefGoogle Scholar

  • [97] Lam J., Takeshita S., Barker J.E., Kanagawa O., Ross F.P., Teitelbaum S.L., TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Invest. 2000, 106, 1481–1488 CrossrefGoogle Scholar

  • [98] Kwun I.S., Cho Y.E., Lomeda R.A.R., Shin H.I., Choi J.Y., Kang Y.H., et al., Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation, Bone, 2010, 46, 732–741 CrossrefGoogle Scholar

  • [99] Nikolic-Hughes I., O’Brien P.J., Herschlag D., Alkaline phosphatase catalysis is ultrasensitive to charge sequestered between the active site zinc ions, J. Am. Chem. Soc. 2005, 127, 9314–9315 CrossrefGoogle Scholar

  • [100] Gerhardt L.C., Boccaccini A.R., Bioactive Glass and Glass- Ceramic Scaffolds for Bone Tissue Engineering, Materials 2010, 3, 3867–3910 CrossrefGoogle Scholar

  • [101] Ritger P.L., Peppas N.A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices, J. Control. Release 1987, 5, 37–42 CrossrefGoogle Scholar

  • [102] Vallet-Regí M., Balas F., Arcos D., Mesoporous materials for drug delivery, Angew. Chem. Int. Ed. Engl. 2007, 46, 7548– 7558 CrossrefGoogle Scholar

  • [103] Smith D.C., A new dental cement, Br. Dent. J. 1968, 125, 381- 384 Google Scholar

  • [104] Wilson A.D., Kent B.E., The glass-ionomer cement: a new translucent cement for dentistry, J. Appl. Chem. Biotech. 1971, 21, 313 Google Scholar

  • [105] Peters W.J., Jackson R.W., Smith D.C., Studies of the Stability and Toxicity of Zinc Polyacrylate (polycarboxylate) Cements (PAZ)*, J. Biomed. Mater. Res. 1974, 8, 53–60 CrossrefGoogle Scholar

  • [106] Darling M., Hill R., Novel polyalkenoate (glass-ionomer) dental cements based on zinc silicate glasses, Biomaterials 1994, 15, 299–306 CrossrefGoogle Scholar

  • [107] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W., Clarkin O.M., et al., Evaluation of two novel aluminum-free, zinc-based glass polyalkenoate cements as alternatives to PMMA bone cement for use in vertebroplasty and balloon kyphoplasty, J. Mater. Sci. Mater. Med. 2010, 21, 59–66 CrossrefGoogle Scholar

  • [108] Qiao Y., ZhangW., Tian P., Meng F., Zhu H., Jiang X., et al., Stimulation of bone growth following zinc incorporation into biomaterials, Biomaterials 2014, 35, 6882–6897 CrossrefGoogle Scholar

About the article

Received: 2015-03-01

Accepted: 2015-05-25

Published Online: 2015-07-29


Citation Information: Biomedical glasses, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0006.

Export Citation

© 2015 P. Balasubramanian et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alireza Rahimnejad Yazdi, Lawrence Torkan, Stephen D. Waldman, and Mark R. Towler
Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017
[2]
J. Rivadeneira and A. Gorustovich
Journal of Applied Microbiology, 2017, Volume 122, Number 6, Page 1424
[3]
Mei Huang, Robert G. Hill, and Simon C.F. Rawlinson
Dental Materials, 2017, Volume 33, Number 5, Page 543
[4]
L Esteban-Tejeda, B Cabal, R Torrecillas, C Prado, E Fernandez-Garcia, R López-Piriz, F Quintero, J Pou, J Penide, and J S Moya
Biomedical Materials, 2016, Volume 11, Number 4, Page 045014
[5]
A. Wajda and M. Sitarz
Journal of Non-Crystalline Solids, 2016, Volume 441, Page 66
[6]
Marta Miola, Enrica Verné, Francesca Elisa Ciraldo, Luis Cordero-Arias, and Aldo R. Boccaccini
Frontiers in Bioengineering and Biotechnology, 2015, Volume 3

Comments (0)

Please log in or register to comment.
Log in