Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

"Imageable" Zinc-Silicate Glass Microspheres For Transarterial Embolization: A Renal Artery Embolization Study.

Sharon Kehoe / Salma Amensag / Mark Looney / Robert J. Abraham / Daniel Boyd
Published Online: 2015-08-26 | DOI: https://doi.org/10.1515/bglass-2015-0007

Abstract

Intrinsically radiopaque (imageable) microspheres for transarterial embolization (TAE) are required to enable real-time intraprocedural feedback and definition of spatial distribution patterns of embolic materials in target tissues. This pilot study evaluates acute and sub-chronic safety and efficacy of imageable zinc-silicate (Zn-Si) glass microspheres in a swine renal artery embolization (RAE) model. Eight swine were divided into two cohorts. Clinical determinants of embolization effectiveness, including imageability, deliverability and temporal/ spatial distribution of microspheres in target tissues were assessed. Subsequently, cohort I and II were used to evaluate the acute and subchronic host response against the Zn-Si microspheres versus a clinical control. The developed microspheres provide for direct intraprocedural feedback using standard diagnostic imaging techniques. Fluoroscopy correlated with ex-vivo high-resolution radiography, CT and micro-CT, demonstrating high imageability, excellent spatial distribution and packing of the Zn- Si microspheres. At follow-up, infarction of the embolized kidneys was noted without any major adverse tissue reaction. Mild recanalization was observed microscopically for both experimental and control microspheres. Zn-Si microspheres permit the definition of spatial distribution in a target tissue, consequently permitting the optimization, personalization and improvement of TAE techniques.

Keywords: Zinc-Silicate Glass; Embolic Microspheres; Radiopacity; Embolization; Swine Renal Artery Embolization; Biocompatibility

References

  • [1] Baino F., Novajra G., Miguez-Pacheo V., Boccaccini A.R., Vitale- Brovarone C., Bioactive Glasses: Special Applications outside the Skeletal System, J. Non. Cryst. Sol. 2015, XXX, XXX-XXX Google Scholar

  • [2] Laurent A., Microspheres and Nonspherical Particles for Embolization, Techn. Vasc. and Inter. Radiol. 2007, 10, 248-256 Google Scholar

  • [3] Ryu R., Uterine Artery Embolization: Current Implications of Embolic Agent Choice, J. Vasc. Inter. Radiol. 2005, 16, 1419-1422 CrossrefGoogle Scholar

  • [4] Sharma K.V., Dreher M.R., Tang Y., Pritchard W.F., Chiesa O.A., Karanian J., et al., Development of “Imageable” Beads for Transcatheter Embolotherapy, J. Vasc. Interv. Radiol. 2010, 21, 865– 876 CrossrefGoogle Scholar

  • [5] Dreher M.R., Sharma K.V., Woods D.L., Reddy G., Tang Y., Pritchard W.F., et al., Radiopaque Drug-Eluting Beads for Transcatheter Embolotherapy: Experimental Study of Drug Penetration and Coverage in Swine, J. Vasc. Interv. Radiol. 2012, 23, 257–264 CrossrefWeb of ScienceGoogle Scholar

  • [6] Lu X.J., Zhang Y., Cui D.C., Meng W.J., Du L.R., Guan H.T., et al., Research of Novel Biocompatible Radiopaque Microcapsules for Arterial Embolization, Int. J. Pharm. 2013, 452, 211-219 Web of ScienceGoogle Scholar

  • [7] Stampfl S., Stampfl U., Bellemann N., Sommer C.M., Thierjung H., Radeleff B., et al., Biocompatibility and Recanalization Characteristics of Hydrogel Microspheres with Polyzene-F as Polymer Coating, Cardiovasc. Interv. Radiol. 2008, 31, 799–806 Web of ScienceGoogle Scholar

  • [8] Siskin G.P., Dowling K., Virmani R., Jones R., Todd D., Pathologic Evaluation of a Spherical Polyvinyl Alcohol Embolic Agent in a Porcine Renal Model, J. Vasc. Interv. Radiol. 2003, 14, 89–98 CrossrefGoogle Scholar

  • [9] Spies J.B. Uterine Artery Embolization for Fibroids: Understanding the Technical Causes of Failure, J. Vasc. Interv. Radiol. 2003, 14, 11–14 CrossrefGoogle Scholar

  • [10] Lopera G., Embolization in Trauma: Principles and Techniques, Semin. Interv. Radiol. 2010, 27, 14–28 Google Scholar

  • [11] Kehoe S., Tonkopi E., Abraham R., Boyd D., Predicting the Thermal Responses and Radiopacity of Multicomponent Zinc– Silicate Bioglasses: A focus on ZnO, La2O3, SiO2 and TiO2, J. Non. Cryst. Sol. 2012, 358, 3388–3395 Google Scholar

  • [12] Kehoe S., Kilcup N., Boyd D., Evaluation of Cytotoxicity for Novel Composite Embolic Microspheres:Material Optimization by Response Surface Methodology, Mat. Lett. 2012, 86, 13–17 Web of ScienceGoogle Scholar

  • [13] Kehoe S., Abraham R., Tonkopi E., Boyd D., Novel Radiopaque Embolic Agent for Uterine Fibroid Embolization: Determination of Radiopacity and Biological Evaluation; Cytocompatibility, Intracutaneous Reactivity and Local Effects after Implantation, J. Vasc. Interv. Radiol. 2011, 23, S33 CrossrefGoogle Scholar

  • [14] Kehoe S., Langman M., Werner-Zwanziger U., Abraham R.J., Boyd D., Mixture Designs to assess Composition-Structure- Property Relationships in SiO2–CaO–ZnO–La2O3–TiO2–MgO– SrO–Na2O Glasses: PotentialMaterials for Embolization, J. Biomater. App. 2013, 28, 416–433 Web of ScienceGoogle Scholar

  • [15] Kehoe S., Tremblay M.T., Coughlan A., Towler M.R., Rainey J.K., Abraham R.J., Boyd D., Preliminary Investigation of the Dissolution Behaviour, Cytocompatibility, Effects of Fibrinogen Conformation and Platelet Adhesion for Radiopaque Embolic Particles, J. Funct. Biomater. 2013, 4, 89–113 CrossrefGoogle Scholar

  • [16] Kehoe S. Looney M., Kilcup N., Tonkopi E., Daly C., Abraham R.J., Boyd D., Effects of 𝛾-Irradiation and Accelerated Aging on Composition-Structure–Property Relationships for Radiopaque Embolic Microspheres, J. Non. Crystal. Sol. 2014, 402, 84–90 Google Scholar

  • [17] Hasan M., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zinc–silicate bioglass: “Imageable beads” for transarterial embolization, J. Biomater. App. 2014, 29, 566–581 Google Scholar

  • [18] Pelage J.P., Polyvinyl Alcohol Particles versus Tris-acryl Gelatin Microspheres for Uterine Artery Embolization for Leiomyomas, J. Vasc. Interv. Radiol. 2004, 15, 789–791 CrossrefGoogle Scholar

  • [19] Stampfl S., Stampfl U., Rehnitz C., Schnabel Ph., Satzl S., Christoph P., et al., Experimental Evaluation of Early and Long- Term Effects of Microparticle Embolization in Two Different Minipig Models, Part I: Kidney, Cardiovasc. Interv. Radiol. 2007, 30, 257–267 Web of ScienceCrossrefGoogle Scholar

  • [20] Araki N., Nagata Y., Fujiwara K., Aoki T., Mitsumori M., Kimura H., et al., Evaluation of Glass Microspheres for Intra-arterial Radiotherapy in Animal Kidneys, Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 459–463 CrossrefGoogle Scholar

  • [21] Stampfl S., Bellemann N., Stampfl U., Radeleff B., Lopez- Benitez R., Sommer C.M., et al., Inflammation and Recanalization of Four Different Spherical Embolization Agents in the Porcine Kidney Model, J. Vasc. Interv. Radiol. 2008, 19, 577–586 Web of ScienceCrossrefGoogle Scholar

  • [22] Andrews R.T., Binkert C.A., Relative Rates of Blood Flow Reduction during Transcatheter Arterial Embolization with Tris-acryl Gelatin Microspheres or Polyvinyl Alcohol: Quantitative Comparison in a Swine Model, J. Vasc. Interv. Radiol. 2003, 14, 1311– 1316 CrossrefGoogle Scholar

  • [23] Bilbao J.I., de Luis E., García de Jalón J.A., deMartino A., Lozano M.D., de la Cuesta A.M., et al., Comparative Study of Four Different Spherical Embolic Particles in an Animal Model: A Morphologic and Histologic Evaluation, J. Vasc. Interv. Radiol. 2008, 19, 1625–1638 Web of ScienceCrossrefGoogle Scholar

  • [24] Stampfl S., Bellemann N., Stampfl U., Sommer C.M., Thierjung H., Lopez-Benitez R., Arterial Distribution Characteristics of Embozene Particles and Comparison with other Spherical Embolic Agents in the Porcine Acute Embolization Model, J. Vasc. Interv. Radiol. 2009, 20, 1597–1607 CrossrefWeb of ScienceGoogle Scholar

  • [25] Swindle M.M., Makin A., Herron A.J., Clubb Jr. F.J., Frazier K.S., Swine as Models in Biomedical Research and Toxicology Testing, Veter. Pathol. 2012, 49, 344–356 Web of ScienceGoogle Scholar

  • [26] Siskin G.P., Englander M., Stainken B.F., Ahn J., Dowling K., Dolen E.G., Embolic Agents used for Uterine Fibroid Embolization, 2000, AJNR, 175, 767–773 Google Scholar

  • [27] Laurent A.,Wassef M.,Namur J.,Martal J., Labarre D., Pelage J.P., 2009, Recanalization and Particle Exclusion after Embolization of Uterine Arteries in Sheep: A Long-Term Study, Fertil. Steril. 2009, 91, 884–892 CrossrefWeb of ScienceGoogle Scholar

  • [28] Arakawa H., Murayama Y., Davis C.R., Howard D.L., Baumgardnera W.L., Marks M.P., Do H.M., Endovascular Embolization of the Swine Rete Mirabile with Eudragit-E 100 Polymer, Amer. J. Neuroradiol. 2007, 28, 1191–1196 Web of ScienceCrossrefGoogle Scholar

  • [29] Germano I.M., Davis R.L., Wilson C.B., Hieshima G.B., Histopathological Follow-up Study of 66 Cerebral Arteriovenous Malformations after Therapeutic Embolization with Polyvinyl Alcohol, J. Neurosurg. 1992, 76, 607–614 CrossrefGoogle Scholar

  • [30] Davidson G.S., Terbrugge K.G., Histologic Long-Term Follow-up after Embolizationwith Polyvinyl Alcohol Particles, Amer. J. Neuroradiol. 1995, 16, 843–846 Google Scholar

  • [31] Schoen F.J., Levy R.J., Calcification of Tissue Heart Valve Substitutes: Progress toward Understanding and Prevention, Ann. Thorac. Surg. 2005, 79, 1072–1080 CrossrefGoogle Scholar

About the article

Received: 2015-06-08

Accepted: 2015-06-08

Published Online: 2015-08-26


Citation Information: Biomedical glasses, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0007.

Export Citation

© 2015 S. Kehoe et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in