Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 26, 2015

"Imageable" Zinc-Silicate Glass Microspheres For Transarterial Embolization: A Renal Artery Embolization Study.

  • Sharon Kehoe , Salma Amensag , Mark Looney , Robert J. Abraham and Daniel Boyd
From the journal Biomedical glasses

Abstract

Intrinsically radiopaque (imageable) microspheres for transarterial embolization (TAE) are required to enable real-time intraprocedural feedback and definition of spatial distribution patterns of embolic materials in target tissues. This pilot study evaluates acute and sub-chronic safety and efficacy of imageable zinc-silicate (Zn-Si) glass microspheres in a swine renal artery embolization (RAE) model. Eight swine were divided into two cohorts. Clinical determinants of embolization effectiveness, including imageability, deliverability and temporal/ spatial distribution of microspheres in target tissues were assessed. Subsequently, cohort I and II were used to evaluate the acute and subchronic host response against the Zn-Si microspheres versus a clinical control. The developed microspheres provide for direct intraprocedural feedback using standard diagnostic imaging techniques. Fluoroscopy correlated with ex-vivo high-resolution radiography, CT and micro-CT, demonstrating high imageability, excellent spatial distribution and packing of the Zn- Si microspheres. At follow-up, infarction of the embolized kidneys was noted without any major adverse tissue reaction. Mild recanalization was observed microscopically for both experimental and control microspheres. Zn-Si microspheres permit the definition of spatial distribution in a target tissue, consequently permitting the optimization, personalization and improvement of TAE techniques.

References

[1] Baino F., Novajra G., Miguez-Pacheo V., Boccaccini A.R., Vitale- Brovarone C., Bioactive Glasses: Special Applications outside the Skeletal System, J. Non. Cryst. Sol. 2015, XXX, XXX-XXX 10.1016/j.jnoncrysol.2015.02.015Search in Google Scholar

[2] Laurent A., Microspheres and Nonspherical Particles for Embolization, Techn. Vasc. and Inter. Radiol. 2007, 10, 248-256 10.1053/j.tvir.2008.03.010Search in Google Scholar PubMed

[3] Ryu R., Uterine Artery Embolization: Current Implications of Embolic Agent Choice, J. Vasc. Inter. Radiol. 2005, 16, 1419-1422 10.1097/01.RVI.0000190494.11439.6FSearch in Google Scholar

[4] Sharma K.V., Dreher M.R., Tang Y., Pritchard W.F., Chiesa O.A., Karanian J., et al., Development of “Imageable” Beads for Transcatheter Embolotherapy, J. Vasc. Interv. Radiol. 2010, 21, 865– 876 10.1016/j.jvir.2010.02.031Search in Google Scholar PubMed PubMed Central

[5] Dreher M.R., Sharma K.V., Woods D.L., Reddy G., Tang Y., Pritchard W.F., et al., Radiopaque Drug-Eluting Beads for Transcatheter Embolotherapy: Experimental Study of Drug Penetration and Coverage in Swine, J. Vasc. Interv. Radiol. 2012, 23, 257–264 10.1016/j.jvir.2011.10.019Search in Google Scholar PubMed PubMed Central

[6] Lu X.J., Zhang Y., Cui D.C., Meng W.J., Du L.R., Guan H.T., et al., Research of Novel Biocompatible Radiopaque Microcapsules for Arterial Embolization, Int. J. Pharm. 2013, 452, 211-219 10.1016/j.ijpharm.2013.05.001Search in Google Scholar PubMed

[7] Stampfl S., Stampfl U., Bellemann N., Sommer C.M., Thierjung H., Radeleff B., et al., Biocompatibility and Recanalization Characteristics of Hydrogel Microspheres with Polyzene-F as Polymer Coating, Cardiovasc. Interv. Radiol. 2008, 31, 799–806 10.1007/s00270-007-9268-2Search in Google Scholar PubMed

[8] Siskin G.P., Dowling K., Virmani R., Jones R., Todd D., Pathologic Evaluation of a Spherical Polyvinyl Alcohol Embolic Agent in a Porcine Renal Model, J. Vasc. Interv. Radiol. 2003, 14, 89–98 10.1097/01.RVI.0000052296.26939.4cSearch in Google Scholar

[9] Spies J.B. Uterine Artery Embolization for Fibroids: Understanding the Technical Causes of Failure, J. Vasc. Interv. Radiol. 2003, 14, 11–14 10.1097/01.RVI.0000052286.26939.f9Search in Google Scholar

[10] Lopera G., Embolization in Trauma: Principles and Techniques, Semin. Interv. Radiol. 2010, 27, 14–28 10.1055/s-0030-1247885Search in Google Scholar PubMed PubMed Central

[11] Kehoe S., Tonkopi E., Abraham R., Boyd D., Predicting the Thermal Responses and Radiopacity of Multicomponent Zinc– Silicate Bioglasses: A focus on ZnO, La2O3, SiO2 and TiO2, J. Non. Cryst. Sol. 2012, 358, 3388–3395 10.1016/j.jnoncrysol.2012.08.024Search in Google Scholar

[12] Kehoe S., Kilcup N., Boyd D., Evaluation of Cytotoxicity for Novel Composite Embolic Microspheres:Material Optimization by Response Surface Methodology, Mat. Lett. 2012, 86, 13–17 10.1016/j.matlet.2012.06.087Search in Google Scholar

[13] Kehoe S., Abraham R., Tonkopi E., Boyd D., Novel Radiopaque Embolic Agent for Uterine Fibroid Embolization: Determination of Radiopacity and Biological Evaluation; Cytocompatibility, Intracutaneous Reactivity and Local Effects after Implantation, J. Vasc. Interv. Radiol. 2011, 23, S33 10.1016/j.jvir.2011.12.113Search in Google Scholar

[14] Kehoe S., Langman M., Werner-Zwanziger U., Abraham R.J., Boyd D., Mixture Designs to assess Composition-Structure- Property Relationships in SiO2–CaO–ZnO–La2O3–TiO2–MgO– SrO–Na2O Glasses: PotentialMaterials for Embolization, J. Biomater. App. 2013, 28, 416–433 10.1177/0885328212455834Search in Google Scholar

[15] Kehoe S., Tremblay M.T., Coughlan A., Towler M.R., Rainey J.K., Abraham R.J., Boyd D., Preliminary Investigation of the Dissolution Behaviour, Cytocompatibility, Effects of Fibrinogen Conformation and Platelet Adhesion for Radiopaque Embolic Particles, J. Funct. Biomater. 2013, 4, 89–113 10.3390/jfb4030089Search in Google Scholar

[16] Kehoe S. Looney M., Kilcup N., Tonkopi E., Daly C., Abraham R.J., Boyd D., Effects of 𝛾-Irradiation and Accelerated Aging on Composition-Structure–Property Relationships for Radiopaque Embolic Microspheres, J. Non. Crystal. Sol. 2014, 402, 84–90 10.1016/j.jnoncrysol.2014.05.016Search in Google Scholar

[17] Hasan M., Kehoe S., Boyd D., Temporal analysis of dissolution by-products and genotoxic potential of spherical zinc–silicate bioglass: “Imageable beads” for transarterial embolization, J. Biomater. App. 2014, 29, 566–581 10.1177/0885328214537694Search in Google Scholar

[18] Pelage J.P., Polyvinyl Alcohol Particles versus Tris-acryl Gelatin Microspheres for Uterine Artery Embolization for Leiomyomas, J. Vasc. Interv. Radiol. 2004, 15, 789–791 10.1097/01.RVI.0000133855.80334.D4Search in Google Scholar

[19] Stampfl S., Stampfl U., Rehnitz C., Schnabel Ph., Satzl S., Christoph P., et al., Experimental Evaluation of Early and Long- Term Effects of Microparticle Embolization in Two Different Minipig Models, Part I: Kidney, Cardiovasc. Interv. Radiol. 2007, 30, 257–267 10.1007/s00270-005-0309-4Search in Google Scholar

[20] Araki N., Nagata Y., Fujiwara K., Aoki T., Mitsumori M., Kimura H., et al., Evaluation of Glass Microspheres for Intra-arterial Radiotherapy in Animal Kidneys, Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 459–463 10.1016/S0360-3016(00)01473-5Search in Google Scholar

[21] Stampfl S., Bellemann N., Stampfl U., Radeleff B., Lopez- Benitez R., Sommer C.M., et al., Inflammation and Recanalization of Four Different Spherical Embolization Agents in the Porcine Kidney Model, J. Vasc. Interv. Radiol. 2008, 19, 577–586 10.1016/j.jvir.2008.01.011Search in Google Scholar PubMed

[22] Andrews R.T., Binkert C.A., Relative Rates of Blood Flow Reduction during Transcatheter Arterial Embolization with Tris-acryl Gelatin Microspheres or Polyvinyl Alcohol: Quantitative Comparison in a Swine Model, J. Vasc. Interv. Radiol. 2003, 14, 1311– 1316 10.1097/01.RVI.0000092903.31640.70Search in Google Scholar

[23] Bilbao J.I., de Luis E., García de Jalón J.A., deMartino A., Lozano M.D., de la Cuesta A.M., et al., Comparative Study of Four Different Spherical Embolic Particles in an Animal Model: A Morphologic and Histologic Evaluation, J. Vasc. Interv. Radiol. 2008, 19, 1625–1638 10.1016/j.jvir.2008.07.014Search in Google Scholar PubMed

[24] Stampfl S., Bellemann N., Stampfl U., Sommer C.M., Thierjung H., Lopez-Benitez R., Arterial Distribution Characteristics of Embozene Particles and Comparison with other Spherical Embolic Agents in the Porcine Acute Embolization Model, J. Vasc. Interv. Radiol. 2009, 20, 1597–1607 10.1016/j.jvir.2009.08.018Search in Google Scholar PubMed

[25] Swindle M.M., Makin A., Herron A.J., Clubb Jr. F.J., Frazier K.S., Swine as Models in Biomedical Research and Toxicology Testing, Veter. Pathol. 2012, 49, 344–356 10.1177/0300985811402846Search in Google Scholar PubMed

[26] Siskin G.P., Englander M., Stainken B.F., Ahn J., Dowling K., Dolen E.G., Embolic Agents used for Uterine Fibroid Embolization, 2000, AJNR, 175, 767–773 10.2214/ajr.175.3.1750767Search in Google Scholar PubMed

[27] Laurent A.,Wassef M.,Namur J.,Martal J., Labarre D., Pelage J.P., 2009, Recanalization and Particle Exclusion after Embolization of Uterine Arteries in Sheep: A Long-Term Study, Fertil. Steril. 2009, 91, 884–892 10.1016/j.fertnstert.2007.12.015Search in Google Scholar PubMed

[28] Arakawa H., Murayama Y., Davis C.R., Howard D.L., Baumgardnera W.L., Marks M.P., Do H.M., Endovascular Embolization of the Swine Rete Mirabile with Eudragit-E 100 Polymer, Amer. J. Neuroradiol. 2007, 28, 1191–1196 10.3174/ajnr.A0536Search in Google Scholar PubMed PubMed Central

[29] Germano I.M., Davis R.L., Wilson C.B., Hieshima G.B., Histopathological Follow-up Study of 66 Cerebral Arteriovenous Malformations after Therapeutic Embolization with Polyvinyl Alcohol, J. Neurosurg. 1992, 76, 607–614 10.3171/jns.1992.76.4.0607Search in Google Scholar PubMed

[30] Davidson G.S., Terbrugge K.G., Histologic Long-Term Follow-up after Embolizationwith Polyvinyl Alcohol Particles, Amer. J. Neuroradiol. 1995, 16, 843–846 Search in Google Scholar

[31] Schoen F.J., Levy R.J., Calcification of Tissue Heart Valve Substitutes: Progress toward Understanding and Prevention, Ann. Thorac. Surg. 2005, 79, 1072–1080 10.1016/j.athoracsur.2004.06.033Search in Google Scholar PubMed

Received: 2015-6-8
Accepted: 2015-6-8
Published Online: 2015-8-26

© 2015 S. Kehoe et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/bglass-2015-0007/html
Scroll to top button