Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Preparation and Characterization of Low Temperature Heat-Treated 45S5 Bioactive Glass-Ceramic Analogues

Kailuo Xie
  • Corresponding author
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lei Zhang
  • Corresponding author
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xianyan Yang
  • Corresponding author
  • Zhejiang-California International Nanosystems Institute Zhejiang University, Hangzhou 310029, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoqing Wang
  • Corresponding author
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guojing Yang
  • Corresponding author
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Licheng Zhang
  • Corresponding author
  • Rui’an People’s Hospital & the 3rd Affiliated Hospital to Wenzhou Medical University, Rui’an 325200, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huifeng Shao
  • Corresponding author
  • Institute of Advanced Manufacturing Engineering, Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yong He
  • Corresponding author
  • Institute of Advanced Manufacturing Engineering, Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jianzhong Fu
  • Corresponding author
  • Institute of Advanced Manufacturing Engineering, Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhongru Gou
  • Corresponding author
  • Zhejiang-California International Nanosystems Institute Zhejiang University, Hangzhou 310029, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-07 | DOI: https://doi.org/10.1515/bglass-2015-0008

Abstract

The 45S5 Bioglassr and its sintered bioactive glass-ceramic (BGC) have been widely investigated as bone implants, mainly for its ability to bond to hard tissues. However, high temperature treatment is not enough to improve its poor mechanical properties, but compromise its biologically relevant performances. The innovative BGC compositions based on the thermally treated 45S5 Bioglassr were developed by decreasing the P2O5 quantity and adding B2O3 (0-6%) into the Na2O–2CaO–3SiO2- based bioactive glasses (BG). The thermally treated BGCs were fully characterized from the microstructural and mechanical points of view and compared to each other. Their bioactivity and bio-dissolutionwere established by means of in vitro soaking tests. The new B2O3-added 45S5 BG analogues, named NCS-xB, can be transformed to crystalline phase (Na2Ca2Si3O9)-based BGCs of high compactness and bioactivity at a relatively low temperature heat treatment (≤ 900ºC), since their bioactivity is preserved. Our experimental results suggest that the new 45S5 BGC analogues with optimized composition exhibit improved micro- structural and mechanical properties, and are beneficial for making specific products such as porous scaffolds or composites for bone defect repair.

Keywords: Na2Ca2Si3O9; 45S5 glass-ceramic analogue; B2O3 additive; Mechanical properties; 45S5 Bioglass®

References

  • Google Scholar

  • [1] Hench L.L., West J.K., Biological applications of bioactive glasses, Life Chem Report. 1996, 13, 187–241. Google Scholar

  • [2] Thomas M.V., Puleo D.A., Al-Sabbagh M., Bioactive glass three decades on, J. Long-term Effects Med Implants. 2005, 15, 585– 597. Google Scholar

  • [3] Huang K., Cai S., Xu G., Ye X., Dou Y., Ren M., Wang X., Preparation and characterization of mesoporous 45S5 bioactive glass– ceramic coatings on magnesium alloy for corrosion protection, J. Alloy Compd. 2013, 580, 290–297. Google Scholar

  • [4] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials. 2011, 32, 2757–2774. CrossrefWeb of ScienceGoogle Scholar

  • [5] Hench L.L., Polak J.M., Third generation biomedical materials, Science. 2002, 295, 1014–1017. Google Scholar

  • [6] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglassr - derived glass–ceramic scaffolds for bone tissue engineering, Biomaterials. 2006, 27, 2414–2425. CrossrefGoogle Scholar

  • [7] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., Tomsia A.P., Bioactive glass in tissue engineering, Acta Biomater. 2011, 2355–2373. Web of ScienceCrossrefGoogle Scholar

  • [8] Hamadouche M., Meunier A., Greenspan D.C., Blanchat C., Zhong J.P., Torre G.P.L., Sedel L., Long-term in vivo bioactivity and degradability of bulk sol-gel bioactive glasses, J. Biomed. Mater. Res. 2001, 54, 560–6. CrossrefGoogle Scholar

  • [9] Gough J.E., Clupper D.C., Hench L.L., Osteoblast responses to tape-cast and sintered bioactive glass ceramics, J. Biomed. Mater. Res. 2004, 69A, 621–28. CrossrefGoogle Scholar

  • [10] Midha S., Kim T.B., van den Bergh W., Lee P.D., Jones J.R., Mitchell C.A., Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo, Acta Biomater. 2013,9, 9169– 9182. Web of ScienceCrossrefGoogle Scholar

  • [11] El-Ghannam A., Ducheyne P., Shapiro I., Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix, Biomaterials. 1997, 18, 295– 303. CrossrefGoogle Scholar

  • [12] Clupper D.C., Hench L.L., Mecholsky J.J., Strength and toughness of tape cast bioactive glass 45S5 following heat treatment, J. Eur. Ceram. Soc. 2004, 24, 2929-2934. CrossrefGoogle Scholar

  • [13] Oonishi H., Hench L.L.,Wilson J., Sugihara F., Tsuji E.,Matsuura M., Kin S., et al., Quantitative comparison of bone growth behavior in granules of Bioglassr A-W glass-ceramic and hydroxyapatite, J. Biomed. Mater. Res. 2000, 51, 37–46. CrossrefGoogle Scholar

  • [14] Bellucci D., Sola A., Cannillo V., Low temperature sintering of innovative bioactive glasses, J. Am. Ceram. Soc. 2012, 95, 1313– 1319. CrossrefGoogle Scholar

  • [15] Arstila H., Hupa L., Karlsson Hupa M., Influence of heat treatment on crystallization of bioactive glasses, J. Non-Cryst. Solids. 2008, 354, 722-728. Web of ScienceGoogle Scholar

  • [16] Boccaccini A.R., Chen Q., Lefebvre L., Gremillard L., Chevalier J., Sintering, crystallisation and biodegradation behavior of Bioglassr-derived glass-ceramics, Faraday Discuss. 2007, 136, 27–44. Web of ScienceGoogle Scholar

  • [17] Clupper D.C., Hench L.L., Crystallization kinetics of tape cast bioactive glass 45S5, J. Non-Cryst. Solids. 2003, 318, 43–48. Google Scholar

  • [18] Lin C.C., Huang L.C., Shen P., Na2CaSi2O6–P2O5 based bioactive glasses, Part 1: elasticity and structure, J. Non-Cryst. Solids. 2005, 351, 3195–3203. Google Scholar

  • [19] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Bernache- Assolant D., Sintering behaviour of 45S5 bioactive glass, Acta Biomater. 2008, 4, 1894–1903. CrossrefGoogle Scholar

  • [20] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Thollet G., Bernache-Assolant D., Govin A., Structural transformations of bioactive glass 45S5with thermal treatments, ActaMater. 2007, 55, 3305–3313. Google Scholar

  • [21] Bellucci D., Cannillo V., Sola A., Chiellini F., Gazzarri M., Migone C., Macroporous Bioglassr-derived scaffolds for bone tissue regeneration, Ceram. Int. 2011, 37, 1575-1585. Web of ScienceGoogle Scholar

  • [22] Bretcanu O., Chatzistavrou X., Paraskevopoulos K., Conradt R., Thompson I., Boccaccini A.R., Sintering and crystallisation of 45S5 Bioglassr powder, J. Eur. Ceram. Soc. 2009, 29, 3299– 3306. CrossrefGoogle Scholar

  • [23] Peitl O., Zanotto E.D., Hench L.L., Effect of crystallization on apatite lauer formation of bioactive glass 45S5, J. Biomed. Mater. Res. 1996, 30, 509–514. Google Scholar

  • [24] Rey C., Kim H.H., Gertenfeld L., Glimcher M.J. Characterization of the apatite crystalinity of bone and their maturation in osteoblast cell culture: comparison with native bone crystals, Conn Tiss Res. 1996, 35, 343–349. Google Scholar

  • [25] Kokubo T., Kushitani H., Saka S., Kitsugi T., Yamamuro T., Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramics A-W, J. Biomed. Mater. Res. 1990, 24, 721–734. CrossrefGoogle Scholar

  • [26] Lu H.H., Pollack S.R., Ducheyne P., 45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in solution containing fibronectin, J. Biomed.Mater. Res. 2001, 54, 454–461. CrossrefGoogle Scholar

  • [27] Andersson O.H., Liu G., Karlsson K.H., Niemi L., Miettinen J., Juhanoja J. In vivo behavior of glasses in the SiO2–CaO–Al2O3– Na2O–B2O3–P2O5 system, J. Mater. Sci. Mater. Med. 1990, 1, 219–227. CrossrefGoogle Scholar

  • [28] Li Y., Coughlan A., Laflr F.R., Pradhan D., Mellott N. P., Wren A.W., Investigating the mechanical durability of bioactive glasses as a function of structure, solubility and incubation time, J. Non-Cryst. Solids. 2013, 380, 25–35. Web of ScienceGoogle Scholar

  • [29] Xu S., Yang X., Zhang L., Chen X., Shao H., He Y., et al., Effect of borosilicate glass on the mechanical and biodegradation properties of 45S5-derived bioactive glass-ceramics, J. Non-Crystal. Solids. 2014, 405, 91-99. Google Scholar

  • [30] Yang X., Zhang L., Chen X., Sun X., Yang G., Guo X., et al., Influence of B2O3 on the thermal and bioactive properties of CaOSiO2- P2O5 system, J. Non-Crystal. Solids. 2012, 358, 1171–1179. Google Scholar

  • [31] Bellucci D., Cannillo V., Sola A., Coeflcient of thermal expansion of bioactive glasses: available literature data and analytical equation estimates, Ceram. Int. 2011, 37, 2963–2972. Web of ScienceGoogle Scholar

  • [32] Liu X., Huang W., Fu H., Yao A., Wang D., Pan H., Lu W., Jiang X., Zhang X, Bioactive borosilicate glass scaffolds: In vitro degradation and bioactivity behaviors, J. Mater. Sci. Mater. Med. 2009, 20, 1237–43. Web of ScienceCrossrefGoogle Scholar

  • [33] Jung S.B., Day D.E. Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite, Phys. Chem. Glasses-B. 2009, 50, 85–88. Google Scholar

  • [34] Huang W., Day D.E., Kittiratanapiboon K., Rahaman M.N. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mater. Sci. Mater. Med. 2006, 17, 583–96. CrossrefGoogle Scholar

  • [35] Regi C.V., Vallet-Regi M., Rorenzo L.M. Preparation and in vitro of hydroapatite/sol-gel glass biphasic material, Biomaterials. 2002, 23, 1865–1872. Google Scholar

  • [36] Pirayesh H., Nychka J.A., Sol-gel synthesis of bioactive glassceramic 45S5 and its in vitro dissolution and mineralization behavior, J. Am. Ceram. Soc. 2013, 96, 1643–1650. Web of ScienceCrossrefGoogle Scholar

  • [37] Gao W., Hench L.L., Bioactive materials, Ceram. Int., 1996, 22, 493–507. Google Scholar

  • [38] Fujibayashi S., Neo M., Kim H.-M., Kokubo T., Nakamura T., A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses, Biomaterials. 2003, 24, 1349–1356. CrossrefGoogle Scholar

  • [39] Clupper D.C., Mecholsky Jr.J.J., LaTorre G.P., Greenspan D.C., Sintering temperature effects on the in vitro bioactive response of tape cast and sintered bioactive glass-ceramic in Tris buffer, J. Biomed. Mater. Res., 2001, 57, 532–540. CrossrefGoogle Scholar

  • [40] Hench L.L., The Story of Bioglassr, J. Mater. Sci.: Mater Med. 2006, 17, 967–78. CrossrefGoogle Scholar

  • [41] Lin A.Y., Deliormanl M., Size-dependent degradation and bioactivity of borate bioactive glass, Ceram. Int. 2011, 39, 8087– 8095. Web of ScienceGoogle Scholar

  • [42] Bi L., Jung S., Day D., Neidig K., Dusevich V., Eick D., Bonewald L., Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds, J. Biomed. Mater. Res. Part A. 2012, 100A, 3267–3275. Web of ScienceCrossrefGoogle Scholar

  • [43] Ramp W.K., Lens L.G., Kaysinger K.K., Medium pH modulates matrix, mineral, and energy metabolism in cultured chick bones and osteoblast-like cells, Bone Miner. 1994, 24, 59–73. CrossrefGoogle Scholar

  • [44] Zhang D., Leppäranta O., Munukka E., Ylänen H., Viljanen M.K., Eerola E., et al., Antibacterial effects and dissolution behaviour of six bioactive glasses, J. Biomed.Mater. Res. Part A. 2010, 93, 475–83. Google Scholar

  • [45] Martins C.H.G., Carvalho T.C., Souza M.G.M., Souza M.G., Ravagnani C., Peitl O., et al., Assessment of antimicrobial effect of biosilicate against anaeorbic, microaeroaerophilic and factutative anaerobic microorganisms, J. Mater. Sci.: Mater Med. 2011, 22, 1439-1446. CrossrefGoogle Scholar

  • [46] Goh Y.F., Alshemary A.Z., Akram M., Kadir M.R.A., Hussain R., Invitro characterization of antibacterial bioactive glass containing ceria, Ceram. Int. 2014, 40, 729–737. Google Scholar

  • [47] Brandao-Burch A., Utting J.C., Orriss I.R., Arnett T.R., Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization, Calcif Tissue. Int. 2005, 77, 167–74. CrossrefGoogle Scholar

About the article

Received: 2014-12-28

Accepted: 2015-06-09

Published Online: 2015-09-07


Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0008.

Export Citation

© 2015 Z. Gou et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mengguo Ren, Xiaonan Lu, Lu Deng, Po-Hsuen Kuo, and Jincheng Du
Physical Chemistry Chemical Physics, 2018
[2]
Xiaonan Lu, Lu Deng, Caitlin Huntley, Mengguo Ren, Po-Hsuen Kuo, Ty Thomas, Jonathan Chen, and Jincheng Du
The Journal of Physical Chemistry B, 2018
[3]
Marco Araújo, Marta Miola, Giovanni Baldi, Javier Perez, and Enrica Verné
Materials, 2016, Volume 9, Number 4, Page 226
[4]
Xiaoqing Wang, Lei Zhang, Xiurong Ke, Juncheng Wang, Guojing Yang, Xianyan Yang, Dongshuang He, Huifeng Shao, Yong He, Jianzhong Fu, Sanzhong Xu, and Zhongru Gou
RSC Adv., 2015, Volume 5, Number 124, Page 102727

Comments (0)

Please log in or register to comment.
Log in