Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Influence of zinc and magnesium substitution on ion release from Bioglass 45S5 at physiological and acidic pH

Max Blochberger
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leena Hupa
  • Corresponding author
  • Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Delia S. Brauer
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-14 | DOI: https://doi.org/10.1515/bglass-2015-0009


Ion release of Mg- and Zn-substituted Bioglass 45S5 (46.1 SiO2-2.6 P2O5-26.9 CaO-24.3Na2O; mol%; with 0, 25, 50, 75 or 100% of calcium replaced bymagnesium/zinc) was investigated at pH 7.4 (Tris buffer) and pH 4 (acetic acid/sodium acetate buffer) in static and dynamic dissolution experiments. Despite Mg2+ and Zn2+ having the same charge and comparable ionic radii, they influenced the dissolution behaviour in very different ways. In Tris, Mgsubstituted glasses showed similar ion release as 45S5, while Zn-substituted glasses showed negligible ion release. At low pH, however, release behaviour was similar, with all glasses releasing large percentages of ions within a few minutes. Precipitation of crystalline phases also varied, as Mg- and Zn-substitution inhibited apatite formation, and Zn-substitution resulted in formation of zinc phosphate phases at low pH. These results are relevant for glasses used in aluminium-free glass ionomer bone cements, as they show that Zn/Mg-substituted glasses release ions similarly fast as glasses containing no Zn/Mg, suggesting that these ions are no prerequisite for ionomer glasses. Zn-substituted glasses may potentially be used as controlled-release materials, which release antibacterial zinc ions when needed only, i.e. at low pH conditions (e.g. bacterial infection), but not at normal physiological pH conditions.

Keywords: intermediate oxide; bioactive glass; phosphosilicate glass; dissolution; glass ionomer cement; continuous flow


  • Google Scholar

  • [1] Wilson A.D., Prosser H.J., Powis D.M., Mechanism of adhesion of poly-electrolyte cements to hydroxyapatite, J Dent Res 1983, 62, 590–592. CrossrefGoogle Scholar

  • [2] De Barra E., Grifln S., Henn G., Hill R., Devlin J., Johal K. et al., The mechanism of fluoride release from glass (ionomer) polyalkenoate cements, J Dent Res 1995, 74, 833–833. Google Scholar

  • [3] Brauer D.S., Karpukhina N., Kedia G., Bhat A., LawR.V., Radecka I. et al., Bactericidal strontium-releasing injectable bone cements based on bioactive glasses, J Roy Soc Interface 2013, 10, 20120647. CrossrefGoogle Scholar

  • [4] Blades M.C., Moore D.P., Revell P.A., Hill R., in vivo skeletal response and biomechanical assessment of two novel polyalkenoate cements following femoral implantation in the female New Zealand White rabbit, J Mater Sci-Mater M 1998, 9, 701–706. CrossrefGoogle Scholar

  • [5] Boyd D., Clarkin O.M.,Wren A.W., Towler M.R., Zinc-based glass polyalkenoate cements with improved setting times and mechanical properties, Acta Biomater 2008, 4, 425–431. CrossrefGoogle Scholar

  • [6] Brauer D.S., Gentleman E., Farrar D.F., Stevens M.M., Hill R.G., Benefits and drawbacks of zinc in glass ionomer bone cements, Biomed Mater 2011, 6, 045007. CrossrefGoogle Scholar

  • [7] Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst 1976, A32, 751–767. CrossrefGoogle Scholar

  • [8] Balasubramanian P., Strobel L.A., Kneser U., Boccaccini A.R., Zinc-containing bioactive glasses for bone regeneration, dental and orthopedic applications, Biomedical Glasses 2015, 1, 51– 69. Google Scholar

  • [9] Diba M., Tapia F., Boccaccini A.R., Strobel L.A., Magnesiumcontaining bioactive glasses for biomedical applications, Int J Appl Glass Sci 2012, 3, 221–253. CrossrefGoogle Scholar

  • [10] Underwood E.J., Trace elements in human and animal nutrition. Academic Press, New York, 1971 1971. Google Scholar

  • [11] Hsieh H.S., Navia J.M., Zinc-deficiency and bone-formation in guinea-pig alveolar implants, Journal of Nutrition 1980, 110, 1581–1588. Google Scholar

  • [12] Oner G., Bhaumick B., Bala R.M., Effect of zinc deficiency on serum somatomedin levels and skeletal growth in young rats, Endocrinology 1984, 114, 1860–1863. Google Scholar

  • [13] Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S., Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen 2007, 15, 2–16. CrossrefGoogle Scholar

  • [14] Prasad A.S., Clinical manifestations of zinc-deficiency, Annu Rev Nutr 1985, 5, 341–365. CrossrefGoogle Scholar

  • [15] Yamaguchi M., Oishi H., Suketa Y., Stimulatory effect of zinc on bone formation in tissue culture, Biochem Pharmacol 1987, 36, 4007–4012. CrossrefGoogle Scholar

  • [16] Yamaguchi M., Yamaguchi R., Action of zinc on bone metabolism in rats - Increases in alkaline phosphatase activity and DNA content, Biochem Pharmacol 1986, 35, 773–777. CrossrefGoogle Scholar

  • [17] Holloway W.R., Collier F.M., Herbst R.E., Hodge J.M., Nicholson G.C., Osteoblast-mediated effects of zinc on isolated rat osteoclasts: Inhibition of bone resorption and enhancement of osteoclast number, Bone 1996, 19, 137–142. CrossrefGoogle Scholar

  • [18] Elliott J.C., Structure and chemistry of the apatites and other calcium orthophosphates, 1st ed. Elsevier, Amsterdam, New York, London, Tokyo, 1994 1994. Google Scholar

  • [19] Aaseth J., Boivin G., Andersen O., Osteoporosis and trace elements – An overview, J Trace Elem Med Bio 2012, 26, 149–152. CrossrefGoogle Scholar

  • [20] FawcettW.J., Haxby E.J.,Male D.A.,Magnesium: physiology and pharmacology, Brit J Anaesth 1999, 83, 302–320. Google Scholar

  • [21] Cannillo V., Pierli F., Ronchetti I., Siligardi C., Zaffe D., Chemical durability and microstructural analysis of glasses soaked in water and in biological fluids, Ceram Int 2009, 35, 2853–2869. CrossrefGoogle Scholar

  • [22] Punnia-Moorthy A., Evaluation of pH changes in inflammation of the subcutaneous air pouch lining in the rat, induced by carrageenan, dextran and staphylococcus aureus, J Oral Pathol Med 1987, 16, 36-44. CrossrefGoogle Scholar

  • [23] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolution medium pH on ion release and apatite formation of Bioglassr 45S5, Mater Lett 2015, 143, 279–282. Google Scholar

  • [24] Shah F.A., Brauer D.S., Desai N., Hill R.G., Hing K.A., Fluoridecontaining bioactive glasses and Bioglassr 45S5 form apatite in low pH cell culture medium, Mater Lett 2014, 119, 96–99. Google Scholar

  • [25] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater 2013, 9, 4457–4486. CrossrefGoogle Scholar

  • [26] Brauer D.S., Bioactive glasses—structure and properties, Angew Chem Int Edit 2015, 54, 4160-4181 and Angew Chem Ger Ed 2015, 127, 4232–4254. CrossrefGoogle Scholar

  • [27] Miller C., Hatton P.V., Mirvakily F., inventors; The University of Shefleld, assignee. A novel glass-ionomer cement. UK patent WO 2014/102538 A1. 3 July 2014. Google Scholar

  • [28] Hill R.G., Brauer D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J Non-Cryst Solids 2011, 357, 3884–3887. Google Scholar

  • [29] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3- diol (Tris) buffer, Acta Biomater 2013, 9, 5400–5410. Google Scholar

  • [30] Fagerlund S., Ek P., Hupa M., Hupa L., On determining chemical durability of glasses, Glass Technol 2010, 51, 235–240. Google Scholar

  • [31] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of a bioactive glass by continuous measurement, J Am Ceram Soc 2012, 95, 3130–3137. Google Scholar

  • [32] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J Biomed Mater Res 2001, 58, 720–726. Google Scholar

  • [33] Aina V., Bertinetti L., Cerrato G., Cerruti M., Lusvardi G., Malavasi G. et al., On the dissolution/reaction of small-grain Bioglass 45S5 and F-modified bioactive glasses in artificial saliva (AS), Applied Surface Science 2011, 257, 4185–4195. Google Scholar

  • [34] Wilson A.D., A hard decade’s work: Steps in the invention of the glass-ionomer cement, J Dent Res 1996, 75, 1723–1727. CrossrefGoogle Scholar

  • [35] Dietzel A., Structural chemistry of glass, Naturwissenschaften 1941, 29, 537–547. CrossrefGoogle Scholar

  • [36] Neuville D.R., Cormier L.,Massiot D., Al coordination and speciation in calciumaluminosilicate glasses: Effects of composition determined by Al-27 MQ-MAS NMR and Raman spectroscopy, Chem Geol 2006, 229, 173–185. Google Scholar

  • [37] Grifln S.G., Hill R.G., Influence of glass composition on the properties of glass polyalkenoate cements. Part I: Influence of aluminium to silicon ratio, Biomaterials 1999, 20, 1579–1586. CrossrefGoogle Scholar

  • [38] Watts S.J., O’Donnell M.D., Law R.V., Hill R.G., Influence of magnesia on the structure and properties of bioactive glasses, J Non-Cryst Solids 2010, 356, 517–524. Google Scholar

  • [39] Pedone A., Malavasi G., Menziani M.C., Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses, J Phys Chem C 2009, 113, 15723–15730. Google Scholar

  • [40] Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Segre U., Carnasciali M.M. et al., A combined experimental and computational approach to (Na2O)1−x·CaO·(ZnO)x·2SiO2 glasses characterization, J Non-Cryst Solids 2004, 345, 710–714. Google Scholar

  • [41] Linati L., Lusvardi G., Malavasi G., Menabue L., Menziani M.C., Mustarelli P. et al., Qualitative and quantitative structureproperty relationship analysis ofmulticomponent potential bioglasses, J Phys Chem B 2005, 109, 4989–4998. Google Scholar

  • [42] Aina V., Malavasi G., Pla A.F., Munaron L., Morterra C., Zinccontaining bioactive glasses: Surface reactivity and behaviour towards endothelial cells, Acta Biomater 2009, 5, 1211–1222. CrossrefGoogle Scholar

  • [43] Tilocca A., Cormack A.N., Modeling the water-bioglass interface by ab initio molecular dynamics simulations, ACS Appl Mater Inter 2009, 1, 1324–1333. Google Scholar

  • [44] Tilocca A., Cormack A.N., The initial stages of bioglass dissolution: a Car-Parrinello molecular-dynamics study of the glasswater interface, P Roy Soc A-Math Phy 2011, 467, 2102–2111. Google Scholar

  • [45] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J. et al., ‘Smart’ acid-degradable zinc-releasing silicate glasses, Mater Lett 2014, 126, 278–280. Google Scholar

  • [46] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass, J Biomed Mater Res A 2014, 102, 647–654. Google Scholar

  • [47] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G., Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid, Acta Biomater 2010, 6, 3275–3282. CrossrefGoogle Scholar

  • [48] Mayer I., Schlam R., Featherstone J.D.B., Magnesiumcontaining carbonate apatites, J Inorg Biochem 1997, 66, 1–6. Google Scholar

  • [49] Mayer I., Apfelbaum F., Featherstone J.D.B., Zinc ions in synthetic carbonated hydroxyapatites, Arch Oral Biol 1994, 39, 87– 90. CrossrefGoogle Scholar

  • [50] Kanzaki N., Onuma K., Treboux G., Tsutsumi S., Ito A., Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face, J Phys Chem B 2000, 104, 4189–4194. Google Scholar

  • [51] Aina V., Perardi A., Bergandi L., Malavasi G., Menabue L., Morterra C. et al., Cytotoxicity of zinc-containing bioactive glasses in contact with human osteoblasts, Chem-Biol Interact 2007, 167, 207–218. Google Scholar

About the article

Received: 2015-05-04

Accepted: 2015-08-14

Published Online: 2015-09-14

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0009.

Export Citation

© 2015 M. Blochberger et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

R. Wetzel, O. Bartzok, L. Hupa, and D.S. Brauer
Materials Letters, 2019, Volume 256, Page 126599
Leena Björkvik, Xiaoju Wang, and Leena Hupa
International Journal of Applied Glass Science, 2016, Volume 7, Number 2, Page 154
Raika Brückner, Maxi Tylkowski, Leena Hupa, and Delia S. Brauer
J. Mater. Chem. B, 2016, Volume 4, Number 18, Page 3121
Maximilian Fuchs, Eileen Gentleman, Saroash Shahid, Robert G. Hill, and Delia S. Brauer
Frontiers in Materials, 2015, Volume 2

Comments (0)

Please log in or register to comment.
Log in