Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Novel Highly Degradable Chloride Containing Bioactive Glasses

Xiaojing Chen
  • Corresponding author
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia Karpukhina
  • Corresponding author
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Delia S. Brauer
  • Corresponding author
  • Otto-Schott-Institut, Friedrich-Schiller-Universität Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert G. Hill
  • Corresponding author
  • Dental Physical Sciences, Institute of Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-15 | DOI: https://doi.org/10.1515/bglass-2015-0010


Addition of CaF2 to a silicate bioactive glass favours formation of fluorapatite, which is less soluble in acidic environment than hydroxyapatite. However, excess CaF2 in the glass is problematic, owing to the formation of crystalline calcium fluoride rather than fluorapatite on immersion. In this paper we investigate chloride as an alternative to fluoride in bioactive silicate glasses and in particular their bioactivity for the first time. Meltderived bioactive glasses based on SiO2-P2O5-CaO-CaCl2 with varying CaCl2 contents were synthesised and characterised by DSC. Chemical analysis of the chloride content was performed by using an ion selective electrode. Glass density was determined using Helium Pycnometry. The glass bioactivity was investigated in Tris buffer. Ion release measurements were carried out by using ICP-OES. The chemical analysis results indicated that the majority of the chloride is retained in the Q2 type silicate glasses during synthesis. Tg and glass density reduced with increasing CaCl2 content. Apatite-like phase formation was confirmed by FITR, XRD and 31P MAS-NMR. The results of the in vitro studies demonstrated that the chloride containing bioactive glasses are highly degradable and form apatite-like phase within three hours in Tris buffer and, therefore, are certainly suitable for use in remineralising toothpastes. The dissolution rate of the glass was found to increase with CaCl2 content. Faster dissolving bioactive glasses may be attractive for more resorbable bone grafts and scaffolds.

Keywords: chloride containing silicate glass; sodium free; highly degradable; bioactive glass; apatite


  • Google Scholar

  • [1] Hench L.L., Day D.E., Holand W., Rheinberger V.M., Glass and Medicine, Int. J. Appl. Glass Sci. 2010, 1, 104–117 CrossrefGoogle Scholar

  • [2] Hench L.L., The story of Bioglass (R), J. Mater. Sci. Mater. Med. 2006, 17, 967–978 CrossrefGoogle Scholar

  • [3] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater. 2013, 9, 4457–4486 CrossrefWeb of ScienceGoogle Scholar

  • [4] Tai B.J., Bian Z., Jiang H., Greenspan D.C., Zhong J., Clark A.E., et al., Anti-gingivitis effect of a dentifrice containing bioactive glass (NovaMin (R)) particulate, J. Clin. Periodontol. 2006, 33, 86–91 CrossrefGoogle Scholar

  • [5] Chen X., Brauer D.S., Karpukhina N., Waite R.D., Barry M., McKay I.J., et al., ’Smart’ acid-degradable zinc-releasing silicate glasses, Mater. Lett. 2014, 126, 278–280 Web of ScienceGoogle Scholar

  • [6] Fredholm Y.C., Karpukhina N., Law R.V., Hill R.G., Strontiumcontaining bioactive glasses: Glass structure and physical properties, J. Non-Cryst. Solids. 2010, 356, 2546–2551 Web of ScienceGoogle Scholar

  • [7] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N., O’Donnell M.D., Hill R.G., et al., The effects of strontiumsubstituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials 2010, 31, 3949–3956 CrossrefWeb of ScienceGoogle Scholar

  • [8] Al-Noaman A., Rawlinson S.C.F., Hill R.G., The role of MgO on thermal properties, structure and bioactivity of bioactive glass coating for dental implants, J. Non-Cryst. Solids. 2012, 358, 3019–3027 Google Scholar

  • [9] Mneimne M., Hill R.G., Bushby A.J., Brauer D.S., High phosphate content significantly increases apatite formation of fluoridecontaining bioactive glasses, Acta Biomater. 2011, 7, 1827–1834 Web of ScienceCrossrefGoogle Scholar

  • [10] Lusvardi G., Malavasi G., Menabue L., Aina V., Morterra C., Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions, Acta Biomater. 2009, 5, 3548– 3562 Web of ScienceCrossrefGoogle Scholar

  • [11] Montazeri N., Jahandideh R., Biazar E., Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations, Int. J. Nanomedicine 2011, 6, 197–201 Web of ScienceGoogle Scholar

  • [12] Wang C.J., Zhang Y.F., Wei J., Wei S.C., Effects of Different pH Conditions on Enamel Erosion Repair by Nano Fluorapatite Pastes, J. Nanosci. Nanotechnol. 2012, 12, 7346–7353 Web of ScienceGoogle Scholar

  • [13] Featherstone J.D.B., The science and practice of caries prevention, J. Am. Dent. Assoc. 2000, 131, 887–899 Google Scholar

  • [14] Brauer D.S., Mneimne M., Hill R.G., Fluoride-containing bioactive glasses: Fluoride loss during melting and ion release in tris buffer solution, J. Non-Cryst. Solids. 2011, 357, 3328–3333 Web of ScienceGoogle Scholar

  • [15] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Novel alkali free bioactive fluorapatite glass ceramics, J. Non-Cryst. Solids. 2014, 402, 172–177 Web of ScienceGoogle Scholar

  • [16] Jabbarifar S.E., Salavati S., Akhavan A., Khosravi K., Tavakoli N., Nilchian F., Effect of fluoridated dentifrices on surface microhardness of the enamel of deciduous teeth, Dent. Res. J. (Isfahan) 2011, 8, 113–117 Google Scholar

  • [17] Kiprianov A.A., Karpukhina N.G., Oxyhalide silicate glasses, Glass Phys. Chem 2006, 32, 1–27 CrossrefGoogle Scholar

  • [18] Chen X., Hill R., Karpukhina N., Chlorapatite Glass-Ceramics, Int. J. Appl. Glass Sci. 2014, 5, 207–216 CrossrefGoogle Scholar

  • [19] Brauer D.S., Al-Noaman A., Hill R.G., Doweidar H., Densitystructure correlations in fluoride-containing bioactive glasses, Mater. Chem. Phys. 2011, 130, 121–125 CrossrefWeb of ScienceGoogle Scholar

  • [20] Brauer D.S., Karpukhina N., O’Donnell M.D., Law R.V., Hill R.G., Fluoride-containing bioactive glasses: Effect of glass design and structure on degradation, pH and apatite formation in simulated body fluid, Acta Biomater. 2010, 6, 3275–3282 CrossrefGoogle Scholar

  • [21] Hill R.G., Law R.V., O’Donnell M.D., Hawes J., Bubb N.L., Wood D.J., et al., Characterisation of fluorine containing glasses and glass-ceramics by 19F magic angle spinning nuclear magnetic resonance spectroscopy, J. Eur. Ceram. Soc. 2009, 29, 2185– 2191 Web of ScienceCrossrefGoogle Scholar

  • [22] Sandland T.O., Du L.S., Stebbins F., Webster J.D., Structure of Cl-containing silicate and aluminosilicate glasses: A Cl-35 MASNMR study, Geochim. Cosmochim. Acta 2004, 68, 5059–5069 CrossrefGoogle Scholar

  • [23] Hill R.G., Brauer D.S., Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition, Acta Biomater. 2011, 7, 3601–3605 CrossrefGoogle Scholar

  • [24] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Novel alkali free bioactive fluorapatite glass ceramics, J. Nocryst. Solids 2014, 402, 172–177 Web of ScienceGoogle Scholar

  • [25] Farooq I., Tylkowski M., Muller S., Janicki T., Brauer D.S., Hill R.G., Influence of sodiumcontent on the properties of bioactive glasses for use in air abrasion, Biomed. Mater. 2013, 8, CrossrefGoogle Scholar

  • [26] Smedskjaer M.M., Jensen M., Yue Y., Effect of thermal history and chemical composition on hardness of silicate glasses, J. Non-Cryst. Solids. 2010, 356, 893–897 Web of ScienceGoogle Scholar

  • [27] Ananthakrishna S., Raghu T., Koshy S., Kumar N. Clinical evaluation of the eflcacy of bioactive glass and strontium chloride for treatment of dentinal hypersensitivity, J. Interdiscip Dentistry. 2012, 2, 92–97 Google Scholar

  • [28] Hench L.L., Bioceramics, J. Am. Ceram. Soc. 1998, 81, 1705– 1728 CrossrefGoogle Scholar

  • [29] Hench L.L., Bioceramics - from concept to clinic, J. Am. Ceram. Soc. 1991, 74, 1487–1510 CrossrefGoogle Scholar

  • [30] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Bioactivity of Sodium Free Fluoride Containing Glasses and Glass-Ceramics, Materials 2014, 7, 5470–5487 CrossrefGoogle Scholar

  • [31] Elliott J.C., Young R.A., Conversion of Single Crystals of Chlorapatite into Single Crystals of Hydroxyapatite, Nature 1967, 214, 904–906 Google Scholar

About the article

Received: 2015-04-25

Accepted: 2015-08-20

Published Online: 2015-09-15

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0010.

Export Citation

© 2015 Xiaojing Chen et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alfonso Pedone, Xiaojing Chen, Robert G. Hill, and Natalia Karpukhina
The Journal of Physical Chemistry B, 2018
Xiaojing Chen, Xiaohui Chen, Alfonso Pedone, David Apperley, Robert G. Hill, and Natalia Karpukhina
Scientific Reports, 2018, Volume 8, Number 1
Louis Forto Chungong, Laura A. Swansbury, Gavin Mountjoy, Alex C. Hannon, Adam F. Lee, and Richard A. Martin
International Journal of Applied Glass Science, 2017
Laura A. Swansbury, Gavin Mountjoy, Xiaojing Chen, Natalia Karpukhina, and Robert Hill
The Journal of Physical Chemistry B, 2017, Volume 121, Number 22, Page 5647
Xiaojing Chen, Natalia Karpukhina, Delia S. Brauer, and Robert G. Hill
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 10, Page 7078
Raika Brückner, Maxi Tylkowski, Leena Hupa, and Delia S. Brauer
J. Mater. Chem. B, 2016, Volume 4, Number 18, Page 3121

Comments (0)

Please log in or register to comment.
Log in