Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Enhanced apatite precipitation on a biopolymer-coated bioactive glass

M. Araújo
  • Corresponding author
  • Colorobbia España S.A, Carretera CV-160, Vilafamés, 12192, España; Ce.Ri.Col, Centro Ricerche Colorobbia, Via Pietramarina 123, Sovigliana (FI) 50053, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Miola
  • Corresponding author
  • Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Venturello
  • Corresponding author
  • Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Baldi
  • Corresponding author
  • Ce.Ri.Col, Centro Ricerche Colorobbia, Via Pietramarina 123, Sovigliana (FI) 50053, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ J. Perez / E. Verné
  • Corresponding author
  • Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-10-20 | DOI: https://doi.org/10.1515/bglass-2015-0011

Abstract

In this work, sintered pellets of a silica-based bioactive glass were dip-coated with a biocompatible natural-derived polymer in order to investigate the influence of the organic coating on the glass bioactivity. After the sintering process optimization, uncoated and coated pellets have been characterized by means of scanning electron microscopy with energy dispersive spectroscopy (SEM, EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and pH measurements, after the immersion in a simulated body fluid (SBF). An increased apatite forming ability and a better control of the pH during soaking of the samples in SBF were observed in the presence of the biopolymer. This result opens a new insight on the simple fabrication of highly bioactive hybrid inorganic-organic materials for medical applications.

Keywords: Bioactive glass; Bioactivity; Melanin coating

References

  • [1] Bosetti M., Verné E., Ferraris M., Ravaglioli A., Cannas M., In vitro characterization of zirconia coated by bioactive glass, Biomaterials, 2001, 22: 987–994. CrossrefGoogle Scholar

  • [2] Verné E., Fernadez-Vallés C., Vitale-Brovarone C., Spriano S., Moisescu C., Double-layer glass-ceramic coatings on Ti6Al4V for dental implants, J. Eur. Ceram. Soc., 2004,24, 2699–2705. CrossrefGoogle Scholar

  • [3] Siqueira R., Zanotto E., Facile route to obtain a highly bioactive SiO2-CaO-Na2O-P2O5 crystalline powder, Mat. Sci. Eng. C 2011, 31, 1791–1799. CrossrefGoogle Scholar

  • [4] Salinas A.J., Román J., Vallet-Regí M., Oliveira J.M., Correia R.N., Fernandes M.H., In vitro bioactivity of glass and glass-ceramics of the 3CaO·P2O5-CaO·SiO2-CaO·MgO-2SiO2 system, Biomaterials 2000, 21, 251–257. CrossrefGoogle Scholar

  • [5] Verné E., Bretcanu O., Balagna C., Bianchi C.L., Cannas M., Gatti S., Vitale-Brovarone C., Early stage reactivity and in-vitro behaviour of silica-based bioactive glasses and glass-ceramics, J. Mat. Sci.: Mat. Med., 2009, 20, 75–87. CrossrefWeb of ScienceGoogle Scholar

  • [6] Magallanes-Perdomo M., Luklinska Z.B., De Azaa A.H., Carrodeguas R.G., De Azaa S., Pena P., Bone-like forming ability of apatite–wollastonite glass ceramic, Eur. Cer. Soc. 2011, 31 (9), 1549–156. Web of ScienceGoogle Scholar

  • [7] Lefebvre L., Chevalier J., Gremillard L., Zenati R., Thollet G., Bernache-Assolant D., Govin A., Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Materialia, 2007, 55, 3305–3313. Web of ScienceCrossrefGoogle Scholar

  • [8] Tomsia A., Saiz E., Song J., Bertozzi C., Biomimetic bonelike composites and novel bioactive glass coatings, Adv. Eng. Mat. 2005, 7, 999–1004. Google Scholar

  • [9] Boccaccini A., Notingher I.,Maquet V., Jérôme R., Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglassr for tissue engineering applications, J.Mat. Sci.: Mat. Med. 2003, 14, 443–450. CrossrefGoogle Scholar

  • [10] Bretcanu O., Misra S., Roy I., Renghini C., Fiori F., Boccaccini A., Salih V., In vitro biocompability of 45S5 Bioglassr-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate), J. Tissue Eng. Regen. Med. 2009, 3, 139–148. CrossrefGoogle Scholar

  • [11] Yunos D., Bretcanu O., Boccaccini A.R., Polymer-bioceramic composites for tissue engineering scaffolds, J. Mat. Sci. 2008, 43, 4433–4442. CrossrefGoogle Scholar

  • [12] Fereshteh Z., Nooeaid P., Fathi M., Bagri A., Boccaccini A.R., The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering, Mat. Sci.Eng. C 2015, 54, 50–60. CrossrefGoogle Scholar

  • [13] Li W., Wang H., Ding Y., Scheithauer E.C., Goudouri O.M., Grünewald A., Detsch R., Agarwal S., Boccaccini A.R., Antibacterial 45S5 Bioglassr-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering, J. Mater. Chem. B 2015, 3, 3367–3378 Web of ScienceCrossrefGoogle Scholar

  • [14] Li W., Garmendia N., Pérez de Larraya U., Ding Y., Detsch R., Grünewald A., Roether J.A., Schubert D.W., Boccaccini A.R., 45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering, RSC Adv. 2014, 4, 56156–56164. Google Scholar

  • [15] Li W., Nooeaid P., Roether J.A., Schubert D.W., Boccaccini A.R., Preparation and characterization of vancomycin releasing PHBV coated 45S5 Bioglassr-based glass–ceramic scaffolds for bone tissue engineering, J.Europ. Cer. Soc. 2014, 34, 505–514. Google Scholar

  • [16] Miao X., Lim W., Huang X., Chen Y., Preparation and characterization of interpenetrating phased TCP/HA/PLGA composites, Mat. Lett. 2005, 59 (29–30), 4000–4005. Google Scholar

  • [17] Huang X., Miao X., Novel Porous Hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass, J. Biomat. Appl. 2007, 21, 351–374. CrossrefGoogle Scholar

  • [18] Wu C., Ramaswamy Y., Boughton P., Zreiqat H., Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification, Acta Biomaterialia 2008, 5, 343–353. CrossrefWeb of ScienceGoogle Scholar

  • [19] Kim H., Knowles J., Kim H.E., Development of hydroxyapatite bone scaffold for controlled drug release via poly(epsiloncaprolactone) and hydroxyapatite hybrid coatings, J. Biomed. Mat. Res. B: Appl. Biomater. 2004, 70, 240–249. CrossrefGoogle Scholar

  • [20] Krajewski A., Ravaglioli A., Tinti A., Taddei P.,Mazzocchi M., Fagnano C., Fini M., Comparison between the in vitro surface transformations of AP40 and RKKP bioactive glasses, J. Mat. Sci.: Mat. Med. 2005, 16, 119–128. CrossrefGoogle Scholar

  • [21] Verné E., Ferraris M., Ventrella A., Paracchini L., Krajewski A., Ravaglioli A., Sintering and plasma spray deposition of bioactive glass-matrix composites for medical applications, J. Eur. Ceram. Soc. 1998, 18, 363–372. CrossrefGoogle Scholar

  • [22] Couto D., Hong Z., Mano J., Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles, Acta Biomaterialia 2009, 5, 115– 123. Web of ScienceCrossrefGoogle Scholar

  • [23] Araujo M., Xavier J.R., Nunes C.D., Vaz P.D., Humanes M., Marine sponge melanin: a new source of an old biopolymer, Struct. Chem. 2012, 23, 115–122. CrossrefWeb of ScienceGoogle Scholar

  • [24] Araújo M., Viveiros R., Correia T., Correia I., Bonifácio V., Casimiro T., Aguiar-Ricardo A., Natural melanin: A potential pHresponsive drug release device, Int. J. of Pharm. 2014, 469, 140– 145. Web of ScienceCrossrefGoogle Scholar

  • [25] Riley P.A., Molecules in focus – Melanin, Int. J. Biochem. Cell Biology, 1997, 29, 1235–1239. CrossrefGoogle Scholar

  • [26] D’Ischia M., Napolitano A., Pezzella A., Meredith P., Sarna T., Chemical and structural diversity in eumelanins: unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed. 2009, 48, 3914–3921. Web of ScienceCrossrefGoogle Scholar

  • [27] Araújoa M., Miola M., Bertone E., Baldi G., Pereza J., Verné E., On the mechanism of apatite-induced precipitation on 45S5 glasspellets coated with a natural-derived polymer, App. Surf. Sci. 2015, 353, 137–149. Web of ScienceCrossrefGoogle Scholar

  • [28] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 2006, 27, 2907–2915. CrossrefGoogle Scholar

  • [29] Lebecq I., Désanglois F., Leriche A., Follet-Houttemane C., Compositional dependence on the in vitro bioactivity of invert or conventional bioglasses in the Si-Ca-Na-P system, J. Biomed. Res. A 2007, 83A, 156–168. Web of ScienceGoogle Scholar

  • [30] Radev L., Hristov V., Michailova I., Samuneva B., Sol-gel bioactive glass-ceramics Part II: Glass-ceramics in the CaO-SiO2- P2O5-MgO system, Centr. Eur. J. Chem. 2009, 7, 322–327. CrossrefWeb of ScienceGoogle Scholar

  • [31] Kansal I., Goel A., Tulyaganov D.U., Pascual M.J., Lee H., Kim H.W., Ferreira J.M.F., Diopside (CaO·MgO·2SiO2)-fluorapatite (9CaO·3P2O5·CaF2) glass-ceramics: potential materials for bone tissue engineering, J. Mat. Chem. 2011, 21, 16247–16256. CrossrefGoogle Scholar

  • [32] Stan G.E., Popa A.C., Galca A.C., Aldica G., Ferreira J.M.F., Strong bonding between sputtered bioglass ceramic films and Ti-substrate implants induced by atomic inter-diffusion postdeposition heat-treatments, Appl. Surf. Sci. 2013, 280, 530–538. Web of ScienceCrossrefGoogle Scholar

  • [33] Liu X., Ding C., Chu P., Mechanism of apatite formation on wollastonite coatings in simulated body fluids, Biomaterials 2004, 25, 1755–1761. CrossrefGoogle Scholar

  • [34] Baghbani F., Moztarzadeh F., Leila H., Mozafari M., Synthesis, characterization and evaluation of bioactivity and antibacterial activity of quinary glass system (SiO2-CaO-P2O5-MgO-ZnO): In vitro study, Bull. Mat. Sci. 2013, 36, 1339–1346. Web of ScienceCrossrefGoogle Scholar

  • [35] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., Tomsia A.P., Bioactive glass in tissue engineering, Acta Biomaterialia 2011, 7, 2355–2373. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-05-14

Accepted: 2015-08-14

Published Online: 2015-10-20


Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0011.

Export Citation

© 2015 M. Araújo et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
M. Araújo, R. Viveiros, A. Philippart, M. Miola, S. Doumett, G. Baldi, J. Perez, A.R. Boccaccini, A. Aguiar-Ricardo, and E. Verné
Materials Science and Engineering: C, 2017, Volume 77, Page 342

Comments (0)

Please log in or register to comment.
Log in