Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

New Journal!

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Alle Formate und Preise
Weitere Optionen …

Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride

Josefina Rivadeneira
  • Korrespondenzautor
  • Grupo Interdisciplinario en Materiales-Universidad Católica de Salta (IESIINGUCASAL), Instituto de Tecnologías y Ciencias de Ingeniería- Universidad Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECIN UBA-CONICET), Campo Castañares s/n, Salta, Argentina
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Gisela M. Luz
  • Korrespondenzautor
  • 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, P-4806-909 Taipas, Guimarães, Portugal; ICVS/3B’s Associate Laboratory, Braga/Guimarães, Portugal
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ M. Carina Audisio
  • Korrespondenzautor
  • Instituto de Investigaciones para la Industria Química - Consejo Nacional de Investigaciones Científicas y Técnicas (INIQUI - CONICET), Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta, Argentina
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ João F. Mano
  • Korrespondenzautor
  • 3B’s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, P-4806-909 Taipas, Guimarães, Portugal; ICVS/3B’s Associate Laboratory, Braga/Guimarães, Portugal
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
/ Alejandro A. Gorustovich
  • Korrespondenzautor
  • Grupo Interdisciplinario en Materiales-Universidad Católica de Salta (IESIINGUCASAL), Instituto de Tecnologías y Ciencias de Ingeniería- Universidad Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECIN UBA-CONICET), Campo Castañares s/n, Salta, Argentina
  • Weitere Artikel des Autors:
  • De Gruyter OnlineGoogle Scholar
Online erschienen: 21.10.2015 | DOI: https://doi.org/10.1515/bglass-2015-0012


To prevent the high frequency of wound infections, anti-bacterial agents can be loaded onto composites. In the present study, the antibiotic tetracycline hydrochloride (TC)was incorporated, for the first time, in collagen type I membranes coated with nano-sized SiO2-CaOP2O5 bioactive glass (n-BG) obtained by a sol-gel chemical route.

Collagen membranes coated with n-BG were immersed in simulated body fluid (SBF) containing 0.25, 0.75 or 1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation method. The antibiotic was released in distilledwater at 37∘C for up to 72 h. The antibacterial activity of the composites was evaluated in vitro by the inhibition zone test and plate count method. Two different Staphylococcus aureus strains, S. aureus ATCC29213 and S. aureus ATCC25923, were exposed to the biomaterials. The results showed that the incorporation but not the release of TC was dependent on the initial concentration of TC in SBF. The biomaterials inhibited S. aureus growth, although the efficacy was similar for all the concentrations. The results allow us to conclude that the new composite could have potential in the prevention of wound infections.

Keywords: Tetracycline hydrochloride; bioactive glass; collagen; Staphylococcus


  • [1] Diefenbeck M., Mückley T., Hofmann G.O., Prophylaxis and treatment of implant-related infections by local application of antibiotics, Injury 2006, 37 Suppl 2, S95–104. CrossrefGoogle Scholar

  • [2] Boateng J.S., Matthews K.H., Stevens H.N., Eccleston G.M., Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci. 2008, 97, 2892–2923. CrossrefWeb of ScienceGoogle Scholar

  • [3] Gao P., Nie X., Zou M., Shi Y., Cheng G., Recent advances inmaterials for extended-release antibiotic delivery system, J. Antibiot (Tokyo) 2011, 64, 625–634. CrossrefGoogle Scholar

  • [4] Kittinger C., Marth E., Windhager R., Weinberg A.M., Zarfel G., Baumert R., Felisch S., Kuehn K.D., Antimicrobial activity of gentamicin palmitate against high concentrations of Staphylococcus aureus, J. Mater. Sci. Mater. Med. 2011, 22, 1447–1453. CrossrefWeb of ScienceGoogle Scholar

  • [5] Chang W.K., Srinivasa S, MacCormick A.D., Hill A.G., Gentamicin-collagen implants to reduce surgical site infection: systematic review and meta-analysis of randomized trials, Ann. Surg. 2013, 258, 59–65. Google Scholar

  • [6] Bertesteanu S., Triaridis S., Stankovic M., Lazar V., Chifiriuc M.C., Vlad M., Grigore R., Polymicrobial wound infections: pathophysiology and current therapeutic approaches, Int. J. Pharm. 2014, 463, 119–126. Web of ScienceGoogle Scholar

  • [7] Perumal S., Ramadass S.K., Madhan B., Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing, Eur. J. Pharm. Sci. 2014, 52, 26–33. Web of ScienceGoogle Scholar

  • [8] Perchyonok V.T., Reher V., Zhang S., Basson N., Grobler S., Evaluation of nystatin containing chitosan hydrogels as potential dual action bio-active restorative materials: in vitro approach, J. Funct. Biomater. 2014, 5, 259–272. CrossrefGoogle Scholar

  • [9] Elsner J.J., Berdicevsky I., Zilberman M., In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics, Acta Biomater. 2011, 7, 325–336. CrossrefWeb of ScienceGoogle Scholar

  • [10] Stigter M., Bezemer J., De Groot K., Layrolle P., Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic eflcacy, J. Control Release 2004, 99, 127–137. CrossrefGoogle Scholar

  • [11] Miola M., Vitale-Brovarone C., Mattu C., Verné E., Antibiotic loading on bioactive glasses and glassceramics: an approach to surface modification, J. Biomater. Appl. 2012, 28, 308–319. Web of ScienceCrossrefGoogle Scholar

  • [12] Hum J., Boccaccini A.R., Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review, J. Mater Sci. Mater. Med. 2012, 23, 2317–2333. CrossrefGoogle Scholar

  • [13] Arcos D., Vallet-Regí M., Bioceramics for drug delivery, Acta Mater. 2013, 46, 890–911. CrossrefGoogle Scholar

  • [14] Caridade S.G., Merino E.G., Alves N.M., Bermudez Vde Z., Boccaccini A.R., Mano J.F., Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis, J. Mech. Behav. Biomed. Mater. 2013, 20,173–183. Web of ScienceCrossrefGoogle Scholar

  • [15] Hong Z., Luz G.M., Hampel P.J., Jin M., Liu A., Chen X., Mano J.F., Mono-dispersed bioactive glass nanospheres: preparation and effects on biomechanics of mammalian cells, J. Biomed. Mater. Res. A 2010, 95A, 747–754. CrossrefWeb of ScienceGoogle Scholar

  • [16] Lin C.,Mao C., Zhang J., Li Y., Chen X., Healing effect of bioactive glass ointment on full-thickness skin wounds, Biomed. Mater. 2012, 7, 045017. CrossrefWeb of ScienceGoogle Scholar

  • [17] Sapadin A.N., Fleischmajer R., Tetracyclines: nonantibiotic properties and their clinical implications, J. Am. Acad. Dermatol. 2006, 54, 258–265. CrossrefGoogle Scholar

  • [18] Ruhe J.J., Menon A., Tetracyclines as an oral treatment option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus, Antimicrob. Agents Chemother. 2007, 51, 3298–32303. Web of ScienceCrossrefGoogle Scholar

  • [19] Harless K., Borlaug G., Monson T.A., Stemper M.E., Davis J.P., Abing A.E., Shelerud J.F., An investigation of antibiotic susceptibility to empiric therapy for community-associated methicillinresistant Staphylococcus aureus, W.M.J. 2014, 113, 59–63. Google Scholar

  • [20] Enoch D.A., Karas J.A., Aliyu S.H., Oral antimicrobial options for the treatment of skin and soft-tissue infections caused by methicillin-resistant Staphylococcus aureus (MRSA) in the UK, Int. J. Antimicrob. Agents 2009, 33, 497–502. CrossrefGoogle Scholar

  • [21] Amin A.N., Cerceo E.A., Deitelzweig S.B., Pile J.C., Rosenberg D.J., Sherman B.M., Hospitalist perspective on the treatment of skin and soft tissue infections,Mayo Clin. Proc. 2014, 89, 1436– 1451. Web of ScienceCrossrefGoogle Scholar

  • [22] Domingues Z.R., Cortés M.E., Gomes T.A., Diniz H.F., Freitas C.S., Gomes J.B., Faria A.M., Sinisterra R.D., Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with beta-cyclodextrin, Biomaterials 2004, 25, 327–333. CrossrefGoogle Scholar

  • [23] Kaitila I., The mechanism by which tetracycline hydrochloride inhibits mineralization in vitro, Biochim. Biophys. Acta 1971, 244, 584–594. Google Scholar

  • [24] Dashti A., Ready D., Salih V., Knowles J.C., Barralet J.E., Wilson M., Donos N., Nazhat S.N., In vitro antibacterial eflcacy of tetracycline hydrochloride adsorbed onto Bio-Oss bone graft, J. Biomed. Mater. Res. B Appl. Biomater. 2010, 93, 394–400. CrossrefGoogle Scholar

  • [25] Andrade A.L., Manzi D., Domingues R.Z., Tetracycline and propolis incorporation and release by bioactive glassy compounds, J. Non-Cryst Solids 2006, 352, 3502–3507. Web of ScienceGoogle Scholar

  • [26] Andrade A.L., Souza D.M., Vasconcellos W.A., Ferreira R.V., Domingues RZ., Tetracycline and/or hydrocortisone incorporation and release by bioactive glasses compounds, J. Non-Cryst Solids 2009, 355, 811–816. Web of ScienceGoogle Scholar

  • [27] Cavalu S., Banica F., Gruian C., Vanea E., Goller G., Simon V., Microscopic and spectroscopic investigation of bioactive glasses for antibiotic controlled release, J. Mol. Struct. 2013, 1040, 47– 52. Google Scholar

  • [28] Zhao L.Z., Yan X.X., Zhou X.F., Zhou L., Wang H.N., Tang H.W., Chengzhong Y., Mesoporous bioactive glasses for controlled drug release, Micropor Mesopor Mat 2008, 109, 210–215. CrossrefGoogle Scholar

  • [29] Rivadeneira J., Di Virgilio A.L., Audisio C., Boccaccini A.R., Gorustovich A., Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride, J. Appl. Microbiol. 2014, 116, 1438– 1446. Web of ScienceCrossrefGoogle Scholar

  • [30] Luz G.M., Mano J.F., Preparation and characterization of bioactive glass nanoparticles prepared by sol-gel for biomedical applications, Nanotechnology 2011, 22, 494014. CrossrefGoogle Scholar

  • [31] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915. CrossrefGoogle Scholar

  • [32] Stigter M., de Groot K., Layrolle P., Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium, Biomaterials 2002, 23, 4143–4153. CrossrefGoogle Scholar

  • [33] Melville A., Rodríguez-Lorenzo L., Forsythe J., Effects of the calcination temperature on the drug delivery behaviour of ibuprofen from hydroxyapatie powders, J. Mater. Sci. Mater. Med. 2008, 19, 1187–1195. CrossrefGoogle Scholar

  • [34] Peles Z., Zilberman M., Novel soy protein wound dressings with controlled antibiotic release: mechanical and physical properties, Acta Biomater. 2012, 8, 209–217. CrossrefGoogle Scholar

  • [35] Wang D., Miller S.C., Kopeckova P., Kopecek J., Bone targeting macromolecular therapeutics, Adv Drug Deliv Rev 2005, 57, 1049–1076. CrossrefWeb of ScienceGoogle Scholar

  • [36] Huang W.C., Zeng H., Weng L.L., Synthesis of tetracycline analogs, Chinese Chem. Lett. 2008, 19, 19–22. CrossrefGoogle Scholar

  • [37] Oyane A., Yokoyama Y., Uchida M., Ito A., The formation of an antibacterial agent-apatite composite coating on a polymer surface using a metastable calcium phosphate solution, Biomaterials 2006, 27, 3295–3303. CrossrefGoogle Scholar

  • [38] Soundrapandian C., Mahato A., Kundu B., Datta S., Sa B., Basu D., Development and effect of different bioactive silicate glass scaffolds: in vitro evaluation for use as a bone drug delivery system, J. Mech. Behav. Biomed. Mater. 2014, 40, 1–12. Web of ScienceCrossrefGoogle Scholar

  • [39] Sepulveda P., Jones J.R., Hench L.L., Characterization of meltderived 45S5 and sol–gel-derived 58S bioactive glasses, J. Biomed. Mater. Res. 2001, 58, 734–740. CrossrefGoogle Scholar

  • [40] Lei B., Chen X.F., Wang Y.J., Zhao N.R., Du C, Fang L.M., Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation, J. Biomed. Mater. Res. Part A 2010, 94A, 1091–1099. Web of ScienceGoogle Scholar

  • [41] van de Belt H., Neut D., Uges D.R., SchenkW., van Horn J.R., van der Mei H.C., Busscher H.J., Surface roughness, porosity and wettability of gentamicin-loaded bone cements, and their antibiotic release, Biomaterials 2000, 21, 1981–1987. Google Scholar

  • [42] Campoccia D., Montanaro L., Speziale P., Arciola C.R., Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use, Biomaterials 2010, 31, 6363–6377. Web of ScienceCrossrefGoogle Scholar

  • [43] Edwards R., Harding K.G., Bacteria and wound healing, Curr. Opin. Infect. Dis. 2004, 17, 91–96. CrossrefGoogle Scholar

  • [44] Zilberman M., Elsner J.J., Antibiotic-eluting medical devices for various applications, J. Control Release 2008, 130, 202–215. Web of ScienceCrossrefGoogle Scholar

  • [45] Desrousseaux C., Sautou V., Descamps S., Traoré O.J., Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, Hosp Infect 2013, 85, 87–93. Web of ScienceCrossrefGoogle Scholar

  • [46] Rivadeneira J., Carina Audisio M., Boccaccini A.R., Gorustovich A.A., In vitro antistaphylococcal effects of a novel 45S5 bioglass/agar–gelatin biocomposite films, J. Appl. Microbiol. 2013, 115, 604–612. CrossrefWeb of ScienceGoogle Scholar

  • [47] Pratten J., Nazhat S.N., Blaker J.J., Boccaccini A.R., In vitro attachment of S. epidermidis to surgical sutures with and without Ag-containing bioactive glass coating, J Biomater Appl 2004, 19, 47–57. CrossrefGoogle Scholar

  • [48] Misra S.K., Ansari T.I., Valappil S.P., Mohn D., Philip S.E., Stark W.J., Roy I., Knowles J.C., Salih V., Boccaccini A.R., Poly(3- hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications, Biomaterials 2010, 31, 2806–2815. CrossrefGoogle Scholar

  • [49] Rivadeneira J., Di Virgilio A.L., Audisio M.C., Boccaccini A.R., Gorustovich A.A., Evaluation of the antibacterial effects of vancomycin hydrochloride released from agar-gelatin-bioactive glass composites, Biomed Mater 2015, 10, 015011 Web of ScienceCrossrefGoogle Scholar


Erhalten: 27.08.2015

Angenommen: 02.09.2015

Online erschienen: 21.10.2015

Quellenangabe: Biomedical glasses, Band 1, Heft 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0012.

Zitat exportieren

© 2015 J. Rivadeneira et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

J. Rivadeneira and A. Gorustovich
Journal of Applied Microbiology, 2017, Jahrgang 122, Nummer 6, Seite 1424

Kommentare (0)