Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Mesoporous bioactive glasses: Relevance of their porous structure compared to that of classical bioglasses

Isabel Izquierdo-Barba
  • Corresponding author
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040-Madrid, Spain; Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María Vallet-Regí
  • Corresponding author
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, UCM, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, 28040-Madrid, Spain; Centro de Investigación Biomédica en Red. Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Spain;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-03 | DOI: https://doi.org/10.1515/bglass-2015-0014

Abstract

In the last decade, the development of third generation bioceramics for Bone Tissue Regeneration has experienced significant progress with the emergence of a new generation of nanostructured materials named mesoporous bioactive glasses (MBG). This new generation of materials, also known as “templated glasses”, presents chemical compositions similar to those of conventional bioactive sol–gel glasses and the added value of an ordered mesopore arrangement. This article shows an indepth comparative study of the ordered porous structures of MBGs compared to conventional glasses (melt and solgel) andhowthese properties influence the bioactivity process. Moreover, the possibility to tailor the textural and structural properties of these nanostructured materials by an exhaustive control of the different synthesis parameters is also discussed. A brief overview regarding the possibility of using these materials as controlled drug delivery systems and as starting materials for the fabrication of 3D scaffolds for bone tissue regeneration is also given.

Keywords: mesoporous bioactive glasses; structural features; textural properties; bioactivity; drug delivery systems and bone tissue regeneration

References

  • [1] Hench L.L., Splinter R.J., Greenlee T.K., Allen W.C., Bonding mechanisms at the interface of ceramic prosthetic materials, J. Biomed. Mater. Res. 1971, 2, 117–141. CrossrefGoogle Scholar

  • [2] Hench L.L., Polak J.M., Third-generation biomedical materials, Science 2002, 295, 1014–1017. Google Scholar

  • [3] Jones J.J., Review of Bioactive Glass: From Hench to Hybrids, Acta Biomater. 2013, 9, 4457–4486. CrossrefGoogle Scholar

  • [4] Li R., Clark A.E., Hench L.L., An Investigation of Bioactive Glass Powders by Sol-Gel Processing, J. Appl. Biomater. 1991, 2, 231– 239. CrossrefGoogle Scholar

  • [5] Vallet-Regí M., Ceramics for medical applications, J. Chem. Soc. Dalton Trans. 2001, 2, 97–108. CrossrefGoogle Scholar

  • [6] Salinas A.J., Vallet-Regí M., Evolution of ceramics with medical applications, Z. Anorg. Allg. Chem. 2007, 633, 1762–1773. Google Scholar

  • [7] Vallet-Regí M., Ragel C.V., Salinas A.J., Glasses with medical applications, Eur. J. Inorg. Chem. 2003, 1029–1042. CrossrefGoogle Scholar

  • [8] Balas F., Arcos D., Pérez-Pariente J., Vallet-Regí M., Textural properties of SiO2-CaO-P2O5 glasses prepared by the sol–gel method, J. Mater. Res. 2001, 16, 1345–1348. Google Scholar

  • [9] Salinas A.J., Vallet-Regí M., Izquierdo-Barba I., Biomimetic apatite deposition on calcium silicate gel glasses, J. Sol-Gel Sci. Technol. 2001, 21, 13–25. Google Scholar

  • [10] Arcos D., Vallet-Regí M., Sol-gel silica based biomaterials and bone tissue regeneration, Acta Biomater 2010, 6, 2874–2888. CrossrefGoogle Scholar

  • [11] Mahony O., Jones J.R., Porous bioactive nanostructured scaffolds for bone regeneration: a sol-gel solution, Nanomedicine 2008, 3, 233–245. CrossrefGoogle Scholar

  • [12] Coradin T., Boissière M., Livage J., Sol-gel chemistry in medicinal science, Curr. Med. Chem. 2006, 13, 99–108. CrossrefGoogle Scholar

  • [13] Hoppe A., Guldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 2011, 32, 2757–2774. CrossrefGoogle Scholar

  • [14] Salinas A.J., Vallet-Regí M., Surface Tailoring of Inorganic Materials for Biomedical Applications, Ed. Raimondi L., Bianchi C., and Verné E., Bentham Science Publishers (2012), ISBN: 978-1- 60805-462-6, Google Scholar

  • [15] Vallet-Regi M., Nanostructured Mesoporous Silica Matrices in Nanomedicine, J. Intern. Med. 2010, 267, 22–43. Google Scholar

  • [16] Izquierdo-Barba I., Salinas A.J., Vallet-Regí M., Bioactive Glasses: From Macro to Nano, International Journal of Applied Glass Science 2013, 1–13. Google Scholar

  • [17] Vallet-Regí M., Revisiting ceramics for medical application, Dalton Trans 2006, 44, 5211–5220. CrossrefGoogle Scholar

  • [18] Yanagisawa T., Shimizu T., Kuroda K., Kato C., The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials, Bull. Chem. Soc. Jpn. 1990, 63, 988–992. CrossrefGoogle Scholar

  • [19] Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S., Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism, Nature 1992, 359, 710–712. Google Scholar

  • [20] Inagaki S., Fukushima Y., Kuroda K.J., Synthesis of highly ordered mesoporous materials from a layered polysilicate, J. Chem. Soc., Chem. Commun. 1993, 680–683. CrossrefGoogle Scholar

  • [21] Taguchi A., Schuth F., Ordered mesoporous materials in catalysis. Micro. Meso. Mater. 2005, 77, 1–45. CrossrefGoogle Scholar

  • [22] Zhao D., Feng J., Huo Q., Melosh N., Fredickson G.H., Chmelka B.F., et al., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science 1998, 279, 548–552. Google Scholar

  • [23] Corma A., From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 1997, 97, 2373– 2419. CrossrefGoogle Scholar

  • [24] Vallet-Regí M., Rámila A., del Real R.P., Pérez-Pariente J., A new property of MCM-41: drug delivery system, Chem. Mater. 2001, 13, 308–311. CrossrefGoogle Scholar

  • [25] Manzano M., Colilla M., Vallet-Regí M., Drug delivery from ordered mesoporous matrices, Expert Opin. Drug Deliv. 2009, 6, 1383–1400. CrossrefGoogle Scholar

  • [26] Vallet-Regí M., Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering, Chem. Eur. J. 2006, 12, 5934–5943. CrossrefGoogle Scholar

  • [27] Vallet-Regí M., Ruiz-Hernández E., Bioceramics: from bone regeneration to cancer nanomedicine, Adv.Mater. 2011, 23, 5177– 5218. CrossrefGoogle Scholar

  • [28] Vallet-Regí M., Balas F., Arcos D., Mesoporousmaterials for drug delivery, Angew. Chem. Int. Ed. 2007, 46, 7548–7558. CrossrefGoogle Scholar

  • [29] Slowing I.I., Trewyn B.G., Giri S., Lin V.S.Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications, Adv. Funct. Mater. 2007, 17, 1225–1236. CrossrefGoogle Scholar

  • [30] Wang S., Ordered mesoporous materials for drug delivery, Micro. Meso. Mater. 2009, 117, 1–9. Google Scholar

  • [31] Manzano M., Vallet-Regí M., New developments in ordered mesoporous materials for drug delivery, J. Mater. Chem. 2010, 20, 5593–5604. CrossrefGoogle Scholar

  • [32] Baeza A., Colilla M., Vallet-Regí M., Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery, Expert Opin. Drug Deliver., Doi: 10.1517/17425247.2014.953051 CrossrefGoogle Scholar

  • [33] Tan K., Cheang P., Ho I.A.W., Lam P.Y.P., Hui K.M., Nanosized bioceramic particles could function as eflcient gene delivery vehicles with target specificity for the spleen, Gene Therapy 2007, 14, 828–835. CrossrefGoogle Scholar

  • [34] Slowing I.I., Trewyn B.G., Lin V.S.Y., Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells, J. Am. Chem. Soc. 2006, 128, 14792–14793. CrossrefGoogle Scholar

  • [35] Hernandez R., Tseng H.R., Wong J.W., Stoddart J.F., Zink J.I., An operational supramolecular nanovalve, J. Am. Chem. Soc. 2004, 126, 3370–3371. CrossrefGoogle Scholar

  • [36] Ferris D.P., Zhao Y.L., Khashab N.M., Khatib H.A., Stoddart J.F., Zink J.I., Light-operated mechanized nanoparticles, J. Am. Chem. Soc. 2009, 131, 1686–1688. Google Scholar

  • [37] Ruiz-Hernández E., Baeza A., Vallet-Regí M., Smart drug delivery through DNA/magnetic nanoparticle gates, ACSNano 2011, 5, 1259–1266. Google Scholar

  • [38] Vallet-Regí M., Ruiz-González L., Izquierdo-Barba I., Gonzalez- Calbet J.M., Revisiting silica based ordered mesoporous materials: medical applications, J. Mater. Chem. 2006, 16, 26–31. CrossrefGoogle Scholar

  • [39] Izquierdo-Barba I., Ruiz-González L., Doadrio J.C., González- Calbet J.M., Vallet-Regí M., Tissue regeneration: a new property of mesoporous materials, Solid State Sci. 2005, 7, 983–989. CrossrefGoogle Scholar

  • [40] Li P., Ohtsuki C., Kokubo T., Nankanishi K., Soga N., Nakamura T., et al., Apatite formation induced by silica gel in a simulated body fluid, J. Am. Ceram. Soc. 1992, 75, 2091–2097. Google Scholar

  • [41] Li P., Ohtsuki C., Kokubo T., Nankanishi K., Soga N., Nakamura T., et al., Effects of ions in aqueous media on hydroxyapatite induction by silica gel and its relevance to bioactivity of bioactive glass and glass-ceramics, J. Appl. Biomat. 1993, 4, 221–229. CrossrefGoogle Scholar

  • [42] Pereira M.M., Clark A.E., Hench L.L., Effect of texture on the rate of hydroxyapatite formation on silica gel surface, J. Am. Ceram. Soc. 1995, 78, 2463–2468. CrossrefGoogle Scholar

  • [43] Vallet-Regí M., Izquierdo-Barba I., Colilla M., Structure and functionalization of mesoporous bioceramics for bone tissue regeneration, and local drug delivery, Phil. Trans. R. Soc. A 2012, 370, 1400–1421. Google Scholar

  • [44] Yan X.X., Yu C.Z., Zhou X.F., Tang J.W., Zhao D.Y., Highly ordered mesoporous bioactive glasses with superior in vitro bone forming bioactivities, Angew. Chem. Int. Ed. 2004, 43, 5980–5984. CrossrefGoogle Scholar

  • [45] López-Noriega A., Arcos D., Izquierdo-Barba I., Sakamoto Y., Terasaki O., Vallet-Regí M., Ordered mesoporous bioactive glasses for bone tissue regeneration, Chem. Mater. 2006, 18, 3137–3144. CrossrefGoogle Scholar

  • [46] Brinker C.J., Lu Y.F., Sellinger A., Fan H.Y., Evaporation-induced self-assembly: nanostructuresmade easy, Adv.Mater. 1999, 11, 579–601. CrossrefGoogle Scholar

  • [47] Zhong J., Greenspan D.C., Processing and properties of sol-gel bioactive glasses, J. BiomedMater Res Appl Biomater. 2000, 53, 694–701. CrossrefGoogle Scholar

  • [48] Yan X.X., Deng H.X., Huang X.H., Lu G.Q., Qiao S.Z., Zhao D.Y., et al., Mesoporous bioactive glasses. I. Synthesis and structural characterization, J. Non-Cryst. Solids 2005, 351, 3209–3217. Google Scholar

  • [49] Yan X.X., Huang X.H., Yu C.Z., Deng H.X., Wang Y., Zhang A.D., et al., The in vitro bioactivity of mesoporous bioactive glasses, Biomaterials 2006, 27, 3396–3403. CrossrefGoogle Scholar

  • [50] Yun H.S., Kim S.E., Hyeon Y.T., Highly ordered mesoporous bioactive glasses with Im3m symmetry, Matter Lett. 2007, 61, 4569–4572. Google Scholar

  • [51] Yun H.S., Kim S.E., Hyeon Y.T., Preparation of 3 dimensional cubic ordered mesoporous bioactive glasses, Solid State Sci. 2008, 10, 1083–1092. Google Scholar

  • [52] Kaneda M., Tsubakiyama T., Carlsson A., Sakamoto Y., Oshuna T., Terasaki O., et al., Structural study of mesoporous MCM-48 and carbon networks synthesized in the spaces of MCM-48 by electron crystallography, J. Phys. Chem. B 2002, 106, 125. Google Scholar

  • [53] García A., Cicuéndez M., Izquierdo-Barba I., Arcos D., Vallet- Regí M., Essential role of calcium phosphate heterogeneities in 2D-hexagonal and 3D-cubic SiO2-CaO-P2O5 mesoporous bioactive glasses, Chem. Mater. 2009, 21, 5474–5484. CrossrefGoogle Scholar

  • [54] Li Z., Chen D.H., Tu B., Zhao D.Y., Synthesis and phase behaviors of bicontinuous cubic mesoporous silica from triblock copolymer mixed anionic surfactant, Microporous Mesoporous Mater. 2007, 105, 34–40. Google Scholar

  • [55] Izquierdo-Barba I., Vallet-Regí M., Fascinating properties of bioactive template glasses: a new generation of nanostructured bioceramics, Solid State Sci. 2011, 13, 773–783. CrossrefGoogle Scholar

  • [56] Izquierdo-Barba I., Arcos D., Sakamoto Y., Terasaki O., López- Noriega A., Vallet-Regí M., High-performance mesoporous bioceramics mimicking bone mineralization, Chem. Mater. 2008, 20, 3191–3198. CrossrefGoogle Scholar

  • [57] Gunawidjaja P., Mathew R., Lo A.Y.H., Izquierdo-Barba I., García A., Arcos D., et al., Local Structures of Mesoporous Bioactive Glasses and Their Surface Alterations in Vitro: Inferences From Solid-State Nuclear Magnetic Resonance, Phil. Trans. R. Soc. A 2012, 370 1376–1399. Google Scholar

  • [58] Lin K.S.K., Tseng Y.H., Mou Y., Hsu Y.C., Yang C.M., Chan J.C.C., Mechanistic Study of Apatite Formation on Bioactive Glass Surface Using 31P Solid-State NMR Spectroscopy, Chem. Mater. 2005, 17 4493–4501. CrossrefGoogle Scholar

  • [59] Clark A.E., Pantano C.G., Hench L.L., Auger Spectroscopic Analysis of Bioglass Corrosion Films, J. Am. Ceram. Soc. 1976, 59 37–39 CrossrefGoogle Scholar

  • [1976]. Google Scholar

  • [60] Leonova E., Izquierdo-Barba I., Arcos D., Lopez-Noriega A., Hedin N., Vallet-Regí M., et al., Multinuclear Solid-State NMR Studies of Ordered Mesoporous Bioactive Glasses, J. Phys. Chem. C 2008, 112, 5552–5562. CrossrefGoogle Scholar

  • [61] Maciel G.E., Sindorf D.W., Silicon-29 Nuclear Magnetic Resonance study of the surface of silica-gel by cross polarization and magic-angle spinning, J. Am. Chem. Soc. 1980, 102 7606–7607. Google Scholar

  • [62] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R.G., Structural Analysis of Bioactive Glasses, J. Non-Cryst. Solids 2005, 351, 173– 183. Google Scholar

  • [63] Pedone A., Properties Calculations of Silica-Based Glasses by Atomistic Simulations Techniques: A Review, J. Phys. Chem. C 2009, 113, 773–784. Google Scholar

  • [64] Tilocca A., Cormack A.N., Surface Signatures of Bioactivity: MD Simulations of 45S and 65S Silicate Glasses, Langmuir 2010, 26, 545–551. CrossrefGoogle Scholar

  • [65] Tilocca A., Structural Models of Bioactive Glasses from Molecular Dynamics Simulations, Proc. R. Soc. A 2009, 465 1003–1027. Google Scholar

  • [66] Vallet-Regí M., Salinas A.J., Ramírez-Castellanos J., González- Calbet J.M., Nanostructure of Bioactive Sol-Gel Glasses and Organic-Inorganic Hybrids, Chem. Mater. 2009, 17, 1874–1879. Google Scholar

  • [67] Mathew R., Turdean-Ionescu C., Stevensson B., Izquierdo-Barba I., García A., Arcos D., et al., Direct Probing of the Phosphate-Ion Distribution in Bioactive Silicate Glasses by Solid-State NMR: Evidence for Transitions between Random/Clustered Scenarios, Chem. Mater. 2013, 25, 1877–1885 CrossrefGoogle Scholar

  • [68] Xia W., Chang J., Well-ordered mesoporous bioactive glasses (MBG): A promising bioactive drug delivery system, J. Control Rel. 2006, 110, 522–530. CrossrefGoogle Scholar

  • [69] Xia W., Chang J., Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass, J. Non-Cryst. Solids 2008, 354, 1338–1341. Google Scholar

  • [70] Zhao L.Z., Yan X.X., Zhou X.F., Zhou L., Wang H.N., Tang J.W., et al., Mesoporous bioactive glasses for controlled drug release, Microporous Mesoporous Mater 2008, 109, 210–215. Google Scholar

  • [71] Cicuéndez M., Izquierdo-Barba I., Portolés M.T., Vallet-Regí M., Biocompatibility and levofloxacin delivery of mesoporous materials, Eur. J. Pharm. Biopharm. 2013, 84, 115–124. CrossrefGoogle Scholar

  • [72] Zhao Y.F., Loo S.C.J., Chen Y.Z., Boey F.Y.C., Ma J., In situ SAXRD study of sol–gel induced well-ordered mesoporous bioglasses for drug delivery, J. Biomed.Mater. Res. 2008, 85A, 1032–1042. CrossrefGoogle Scholar

  • [73] Sun J., Li Y.S., Li L., Zhao W.R., Li L., Gao J.H., et al., Functionalization and bioactivity in vitro of mesoporous bioactive glasses, J. Non-Cryst. Solids 2008, 354, 3799–3805. Google Scholar

  • [74] López-Noriega A., Arcos D., Vallet-Regí M., Functionalizing Mesoporous Bioglasses for Long-Term Anti-Osteoporotic Drug Delivery, Chem. Eur. J. 2010, 16, 10879–10886. CrossrefGoogle Scholar

  • [75] Wu C., Chang J., Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors, J. Control Release 2014, 193, 282–295. CrossrefGoogle Scholar

  • [76] Ostomel T.A., Shi Q.H., Tsung C.K., Liang H.J., Stucky G.D., Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity, Small 2006, 2, 1261– 1265. CrossrefGoogle Scholar

  • [77] Arcos D., López-Noriega A., Ruiz-Hernández E., Terasaki O., Vallet-Regí M., Ordered mesoporous microspheres for bone grafting and drug delivery, Chem. Mater. 2009, 21, 1000–1009. CrossrefGoogle Scholar

  • [78] Yun H.-S., Kim S.-H., Lee S.Y., Song I.-H., Synthesis of high surface area mesoporous bioactive glass nanospheres,Mater Lett. 2010, 64, 1850–1853. CrossrefGoogle Scholar

  • [79] Zhao S., Li Y.B., Li D.X., Synthesis and in vitro bioactivity of CaO-SiO2-P2O5 mesoporous microspheres, Microporous Mesoporous Mater. 2010, 135, 67–73. Google Scholar

  • [80] Hong Y.L., Chen X.S., Jing X.B., Fan H.S., Gu Z.W., Zhang X.D., Fabrication and Drug Delivery of Ultrathin Mesoporous Bioactive Glass Hollow Fibers. Adv. Funct. Mater. 2010, 20, 1503– 1510. CrossrefGoogle Scholar

  • [81] Arcos D., Vallet-Regí M., Bioceramics for drug delivery, ActaMaterialia 2013, 61, 890–911. Google Scholar

  • [82] Li X., Wang X.P., Hua Z., Shi J.L., One-pot synthesis of magnetic and mesoporous bioactive glass composites and their sustained drug release property, Acta Materialia. 2008, 56, 3260– 3265 CrossrefGoogle Scholar

  • [83] Lin H.-M., Wang W.-K., Hsiung P.-A., Shyu, S.-G., Light-sensitive intelligent drug delivery systems of coumarin-modified mesoporous bioactive glass, Acta Biomaterialia 2010, 6, 3265–3263. Google Scholar

  • [84] Hutmacher D.W., Polymeric Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials 2000, 21, 2529–2543. CrossrefGoogle Scholar

  • [85] Stevens M.M., George J., Exploring and Engineering the Cell Surface Interface, Science. 2005, 310, 1135–1138. Google Scholar

  • [86] Cicuendez M., Malmsten M., Doadrio J.C., Portoles M.T., Izquierdo-Barba I., Vallet-Regi M., Tailoring hierarchical mesomacroporous 3D scaffolds: from nano to macro, J. Mater. Chem B 2014, 2, 49–58. CrossrefGoogle Scholar

  • [87] Shi Q.H.,Wang J.F., Zhang J.P., Fan J., Stucky G.D., Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation, Adv. Mater. 2006, 18, 1038–1042. CrossrefGoogle Scholar

  • [88] Yun H.-S., Kim S.-E., Hyeon Y.-T., Design and preparation of bioactive glasses with hierarchical pore networks, Chem. Comm. 2007, 2139–2141. CrossrefGoogle Scholar

  • [89] Arcos D., Vila M., López-Noriega A., Rossignol F., Champion E., Oliveira F.J., Vallet-Regí M., Mesoporous bioactive glasses: mechanical reinforcement by means of a biomimetic process, Acta Biomater 2011, 7, 2952–2959. CrossrefGoogle Scholar

  • [90] Shruti S., Salinas A.J., Lusvardi G., Malavasi G., Menabue L., Vallet-Regi M., Mesoporous bioactive scaffolds prepared with cerium-, gallium- and zinc-containing glasses, Acta Biomater 2013, 9, 4836–4844. CrossrefGoogle Scholar

  • [91] Yun H.-S., Kim S.-E., Hyun Y.-T., Heo S.-J., Shin J.-W., Three- Dimensional Mesoporous-Giantporous Inorganic/Organic Composite Scaffolds for Tissue Engineering, Chem. Mater. 2007, 19, 6363–6366. CrossrefGoogle Scholar

  • [92] Yun H.-S., Kim S.-E., Hyun Y.-T., Heo S.-J., Shin J.-W., Hierarchically mesoporous-macroporous bioactive glasses scaffolds for bone tissue regeneration, J Biomed Mater Res Part B: Appl Biomater 2008, 87B, 374–380. CrossrefGoogle Scholar

  • [93] Wang X.P., Li X., Onuma K., Ito A., Sogo Y., Kosuge K., et al., Mesoporous bioactive glass coatings on stainless steel for enhanced cell activity, cytoskeletal organization and AsMg immobilization, J Mater Chem 2010, 20, 6437–6445. CrossrefGoogle Scholar

  • [94] Alcaide M., Portolés P., López-Noriega A., Arcos D., Vallet- Regí M., Portolés M.T., Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes demonstrates its biocompatibility as a potential bone graft material, Acta Biomater 2010, 6, 892–899. CrossrefGoogle Scholar

  • [95] Zhu Y.F., Wu C.T., Ramaswamy Y., Kockrick E., Simon P., Kaskel S., et al., Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBGs) scaffolds for bone tissue engineering, Micro Mesoporous Mater. 2008, 112, 494–503. Google Scholar

  • [96] Shih C.J., Chen H.T., Huang L.F., Lu P.S., Chang H.F., Chang I.L., Synthesis andin vitro bioactivity of mesoporous bioactive glass scaffolds, Mater. Sci Eng. C 2010, 30, 657–663. CrossrefGoogle Scholar

  • [97] Wei G.F., Yan X.X., Yi J., Zhao L.Z., Zhou L., Wang Y.H., et al., Synthesis and in-vitro bioactivity of mesoporous bioactive glasses with tunable macropores. Microporous Mesoporous Mater. 2011, 143, 157–165. Google Scholar

  • [98] Zhu Y.F., Kaskel S., Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds, Microporous Mesoporous Mater 2009, 118, 176–182. Google Scholar

  • [99] Wu C.T., FanW., Gelinsky M., Xiao Y., Simon P., Schulze R., et al., Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties, Acta Biomater 2011, 7, 1797–1806. CrossrefGoogle Scholar

  • [100] Arcos D., Boccaccini A.R., Bohner M., Diez-Perez A., Epple M., Gomez- Barrena E., et al., The relevance of biomaterials to the prevention and treatment of osteoporosis, Acta Biomaterialia 2014, 10, 1793–1805. CrossrefGoogle Scholar

About the article

Received: 2015-09-09

Accepted: 2015-09-09

Published Online: 2015-11-03


Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0014.

Export Citation

© 2015 I. Izquierdo-Barba and M. Vallet-Regí. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zoi Terzopoulou, Diana Baciu, Eleni Gounari, Theodore Steriotis, Georgia Charalambopoulou, Dimitrios Tzetzis, and Dimitrios Bikiaris
Molecules, 2019, Volume 24, Number 17, Page 3067
[2]
Saeid Kargozar, Seeram Ramakrishna, and Masoud Mozafari
Current Opinion in Biomedical Engineering, 2019
[3]
Francesco Baino, Elisa Fiume, Jacopo Barberi, Saeid Kargozar, Juliana Marchi, Jonathan Massera, and Enrica Verné
International Journal of Applied Ceramic Technology, 2019, Volume 16, Number 5, Page 1762
[4]
Saeid Kargozar, Maziar Montazerian, Elisa Fiume, and Francesco Baino
Frontiers in Bioengineering and Biotechnology, 2019, Volume 7
[5]
Hugo R. Fernandes, Anuraag Gaddam, Avito Rebelo, Daniela Brazete, George E. Stan, and José M. F. Ferreira
Materials, 2018, Volume 11, Number 12, Page 2530
[6]
V. Lalzawmliana, Akrity Anand, Vinod Kumar, Piyali Das, K. Bavya Devi, Jayanta Mukherjee, Asit Kumar Maji, Biswanath Kundu, Mangal Roy, and Samit Kumar Nandi
Journal of the Mechanical Behavior of Biomedical Materials, 2018
[7]
Sara Pourshahrestani, Nahrizul Adib Kadri, Ehsan Zeimaran, and Mark R. Towler
Biomaterials Science, 2018
[8]
Francesco Baino, Isabel Potestio, and Chiara Vitale-Brovarone
Materials, 2018, Volume 11, Number 9, Page 1524
[9]
Preethi Balasubramanian, Antonio J. Salinas, Sandra Sanchez-Salcedo, Rainer Detsch, Maria Vallet-Regi, and Aldo R. Boccaccini
Journal of Non-Crystalline Solids, 2018
[10]
N. Gómez-Cerezo, L. Casarrubios, I. Morales, M.J. Feito, M. Vallet-Regí, D. Arcos, and M.T. Portolés
Journal of Colloid and Interface Science, 2018
[12]
Sonia Fiorilli, Giulia Molino, Carlotta Pontremoli, Giorgio Iviglia, Elisa Torre, Clara Cassinelli, Marco Morra, and Chiara Vitale-Brovarone
Materials, 2018, Volume 11, Number 5, Page 678
[13]
Francesco Baino, Elisa Fiume, Marta Miola, and Enrica Verné
International Journal of Applied Ceramic Technology, 2018
[14]
J. Rivadeneira and A. Gorustovich
Journal of Applied Microbiology, 2017, Volume 122, Number 6, Page 1424
[15]
Giulia Molino, Alessandra Bari, Francesco Baino, Sonia Fiorilli, and Chiara Vitale-Brovarone
Journal of Materials Science, 2017, Volume 52, Number 15, Page 9103
[16]
Francesco Baino, Sonia Fiorilli, and Chiara Vitale-Brovarone
Bioengineering, 2017, Volume 4, Number 1, Page 15
[17]
Yinghong Zhou, Mengchao Shi, Julian R. Jones, Zetao Chen, Jiang Chang, Chengtie Wu, and Yin Xiao
International Materials Reviews, 2017, Volume 62, Number 7, Page 392
[18]
Nidhi Gupta, Deenan Santhiya, and Anusha Aditya
J. Mater. Chem. B, 2016, Volume 4, Number 47, Page 7605
[19]
Rafaela García-Alvarez, Isabel Izquierdo-Barba, and María Vallet-Regí
Acta Biomaterialia, 2017, Volume 49, Page 113
[20]
María Vallet-Regí, Antonio J. Salinas, and Daniel Arcos
International Journal of Applied Glass Science, 2016, Volume 7, Number 2, Page 195

Comments (0)

Please log in or register to comment.
Log in