Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Dissolution behavior and cell compatibility of alkali-free MgO-CaO-SrO-TiO2-P2O5 glasses for biomedical applications

Sungho Lee
  • Corresponding author
  • Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Akiko Obata
  • Corresponding author
  • Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Delia S. Brauer
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Toshihiro Kasuga
  • Corresponding author
  • Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokisocho, Showa-ku, Nagoya 466-8555, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-18 | DOI: https://doi.org/10.1515/bglass-2015-0015


Owing to their controlled solubility, phosphate invert glasses are of interest for use as temporary implant materials or tissue engineering scaffolds for controlled ion release.MgO-CaO-SrO-TiO2-P2O5 invert glasses were prepared and their dissolution behavior and cell response were examined.MgO addition to the phosphate invert glass system improved glass formation, owing to the relatively large field strength of Mg2+ ions. In osteoblastlike MC3T3-E1 cell culture tests, cell numbers on the invert glasses were significantly larger compared with the control, possibly caused by the release of Mg2+ ions promoting enhanced cell adhesion and proliferation. Alkaline phosphatase (ALP) activity varied with glass composition, with higher strontium for calcium substitution (33 to 100%) showing highest ALP activity. This effect may be caused by the release of strontium ions from the glasses.

Keywords: Phosphate glass; magnesium; calcium; strontium; ion release; cell response; MC3T3-E1


  • [1] Hench L.L., Polak J.M., Third-Generation Biomedical Materials, Science 2002, 295, 1014–1017 Google Scholar

  • [2] Xynos I.D., Edgar A.J., Buttery L.D.K., Hench L.L., Polak J.M., Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin-Like Growth Factor II mRNA Expression and Protein Synthesis, J. Biomed.Mater. Res. 2000, 276, 461–465 Google Scholar

  • [3] Jones J.R., Tsigkow O., Coates E.E., Stevens M.M., Polak J.M., Hench L.L., Extracellular Matrix Formation and Mineralization on a Phosphate-Free Porous Bioactive Glasses Scaffold Using Primary Human Osteoblasts (HOB) Cells, Biomaterials 2007, 28, 1653–1663 Web of ScienceCrossrefGoogle Scholar

  • [4] Takeichi M., Okada T.S., Role ofMagnesiumAnd CalciumIons in Cell-To-Substrate Adhesion, Exptl. Cell Res. 1972, 74, 51–60 Google Scholar

  • [5] Yamasaki Y., Yoshida Y., Okazaki M., Shimazu A., Uchida T., Kudo T., et al., Synthesis of Functionally Graded MgCO3 Apatite Accelerating Osteoblast Adhesion, J. Biomed. Res. 2002, 62, 99–105 Google Scholar

  • [6] Wolf F.I., Cittadini A., Magnesium in Cell Proliferation and Differentiation, Front. Biosci. 1999, 4, d607–617 Web of ScienceCrossrefGoogle Scholar

  • [7] Saboori A., Rabiee M., Moztarzadeh F., Sheikhi M., Tahriri M., Karimi M., Synthesis, Characterization and in Vitro Bioactivity of Sol-Gel-Derived SiO2-CaO-P2O5-MgO Bioglass,Mater. Sci. Eng. C 2009, 29, 335–340 CrossrefGoogle Scholar

  • [8] Marie P.J., Ammann P., Boivin G., Ray C., Mechanisms of Action and Therapeutic Potential of Strontium in Bone, Calcif. Tissue Int. 2001, 69, 121–129 Google Scholar

  • [9] Marie P.J., StrontiumRanelate: A Physiological Approach for Optimizing Bone Formation and Resorption, Bone 2006, 38, S10– S14 CrossrefGoogle Scholar

  • [10] Marie P.J., Strontium Ranelate: New Insights into Its Dual Mode of Action, Bone 2007, 40, S5–S8 CrossrefGoogle Scholar

  • [11] Kasuga T., Abe Y., Calcium Phosphate Invert Glasses with Soda and Titania, J. Non-Cryst. Solids 1999, 243, 70–74 Google Scholar

  • [12] Kasuga T., Hosoi Y., Nogami M., Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid, J. Am. Ceram. Soc. 2001, 84, 450–452 Google Scholar

  • [13] Kasuga T., Hattori T., Niinomi M., Phosphate Glasses and Glass- Ceramics for Biomedical Applications, Phosphorus Res. Bull. 2012, 26, 8–15 Google Scholar

  • [14] Lee S., Obata A., Kasuga T., Ion-release from SrO-CaO-TiO2- P2O5 Glasses in Tris Buffer Solution, J. Ceram. Soc. Jpn. 2009, 117, 935–938 Google Scholar

  • [15] Gentleman E., Fredholm Y.C., Jell G., Lotfibakhshaiesh N., O’Donnell M.D., Hill R.G., Stevens M.M., The Effects of Strontium-Substituted Bioactive Glasses on Osteoblasts and Osteoclasts in vitro, Biomaterials 2010, 31, 3949–3956 CrossrefWeb of ScienceGoogle Scholar

  • [16] Mandlule A., Döhler F., Wüllen L.van, Kasuga T., Brauer D.S., Changes in Structure and Thermal Properties with Phosphate Content of Ternary Calcium Sodium Phosphate Glasses, J. Non- Cryst. Solids 2014, 392–393, 31–38 Google Scholar

  • [17] Lee S., Obata A., Kasuga T., Ion Releasing Abilities of Phosphate Invert Glasses Containing MgO, CaO or SrO in Tris Buffer Solution, Bioceram. Dev. Appl. 2010, 1, DOI: 10.4303/bda/D110148 CrossrefGoogle Scholar

  • [18] Morikawa H., Lee S., Kasuga T., Brauer D.S., Effects of Magnesiumfor CalciumSubstitution in P2O5-CaO-TiO2 Glasses, J. Non- Cryst. Solids 2013, 380, 53–59 Google Scholar

  • [19] Walter G., Vogel J., Hoppe U., Hartmann P., The Structure of CaO–Na2O–MgO–P2O5 Invert Glass, J. Non-Cryst. Solids 2001, 296, 212–223 Google Scholar

  • [20] Ouchetto M., Elouadi B., Parke S., Study of Lanthanide Zinc Phosphate Glasses by Differential Thermal Analysis, Phys. Chem. Glasses 1991, 32, 22–28 Google Scholar

  • [21] Karakassides M.A., Saranti A., Koutselas I., Preparation and Structural Study of Binary Phosphate Glasseswith High Calcium and/orMagnesiumContent, J. Non-Cryst. Solids 2004, 347, 69– 79 Google Scholar

  • [22] Sakka S., Miyaji F., Fukumi F., Structure of Binary K2O-TiO2 and Cs2O-TiO2 Glasses, J. Non-Cryst. Solids 1989, 112, 64–68 CrossrefGoogle Scholar

  • [23] Abou Neel E.A., Pickup D.M., Valappil S.P., Newport R.J., Knowles J.C., Bioactive Functional Materials: A Perspective on Phosphate-based Glasses, J. Mater. Chem. 2009, 19, 690–701 CrossrefWeb of ScienceGoogle Scholar

  • [24] Brauer D.S., Rüssel C., Kraft J., Solubility of Glasses in the System P2O5-CaO-MgO-Na2O-TiO2: Experimental and Modeling Using Artificial Neural Networks, J. Non-Cryst. Solids 2007, 353, 263–270 Web of ScienceGoogle Scholar

  • [25] Döhler F., Mandlule A., Wüllen L.van, Friedrich M., Brauer D.S., 31P NMR Characterisation of Phosphate Fragments During Dissolution of CalciumSodiumPhosphate Glasses, J.Mater. Chem. B 2014, in press, DOI: 10.1039/c4tb01757a CrossrefGoogle Scholar

  • [26] Fredholm Y.C., Karpukhina N., LawR.V., Hill R.G., StrontiumContaining Bioactive Glasses: Glass Structure and Physical Properties, J. Non-Cryst. Solids 2010, 356, 2546–2551 Web of ScienceGoogle Scholar

  • [27] Fredholm Y.C., Karpukhina N., Brauer D.S., Jones J.R., Law R.V., Hill R.G., Influence of Strontium for Calcium Substitution in Bioactive Glasses on Degradation, Ion Release and Apatite Formation, J. R. Soc. Interface 2012, 9, 880–889 CrossrefWeb of ScienceGoogle Scholar

  • [28] Abou Neel E.A., Chrzanowski W., Pickup D.M., O’Dell L.A., Mordan N.J., Newport R.J., Smith M.E., Knowles J.C., Structure and Properties of Strontium-Doped Phosphate-Based Glasses, J. R. Soc. Interface 2009, 6, 435–446 CrossrefWeb of ScienceGoogle Scholar

  • [29] Dietzel A., Die Kationenfeldstärken und ihre Beziehungen zu Entglasungsvorgängen, zur Verbindungsbildung und zu den Schmelzpunkten von Silicaten, Ztschr. Elektrochem. 1942, 48, 9–23 Google Scholar

  • [30] Watts S.J., Hill R.G., O’Donnell M.D., Law R.V., Influence of Magnesia on the Structure and Properties of Bioactive Glasses, J. Non-Cryst. Solids 2010, 356, 517–524 Google Scholar

  • [31] Kishioka A., Haba M., Amagasa M., Glass Formation in Multicomponent Phosphate System Containing TiO2, Bull. Chem. Soc. Japan. 1974, 47, 2493–2496 Google Scholar

  • [32] Brauer D.S., Karpukhina N., Law R.V., Hill R.G., Effect of TiO2 Addition on Structure, Solubility and Crystallisation of Phosphate Invert Glasses for Biomedical Applications, J.Non-Cryst. Solids 2010, 356, 2626–2633 Web of ScienceGoogle Scholar

  • [33] Tylkowski M., Brauer D.S., Mixed Alkali Effects in Bioglassr 45S5, J.Non-Cryst. Solids 2013, 376, 175–181 Google Scholar

  • [34] Neel E.A., Ahmed I., Knowles J.C., Investigation of the Mixed Alkali Effect in a Range of Phosphate Glasses, Key Eng. Mater. 2007, 330–332, 161–164 Google Scholar

  • [35] Day D.E., Mixed Alkali Glasses - Their Properties and Uses, J.Non-Cryst. Solids 1976, 21, 343–372 CrossrefGoogle Scholar

  • [36] Swenson J., Adams S., Mixed Alkali Effect in Glasses, Phys. Rev. Lett. 2003, 90, 155507-1-4. Google Scholar

  • [37] Walter G., Vogel J., Hoppe U., Hartmann P., Structural Study of Magnesium Polyphosphate Glasses, J. Non-Cryst. Solids 2003, 320, 210–222 Google Scholar

  • [38] Walter G., Hoppe U., Kranold R., Stachel D., Structural Characterisation of Magnesium Phosphate Glasses by X-ray Diffraction, Phys. Chem. Glasses 1994, 35, 245–252 Google Scholar

  • [39] Barbara A., Delannoy P., Denis B.G., Marie P.J., Normal Matrix Mineralization Induced By Strontium Ranelate in MC3T3-E1 Osteogenic Cells, Metabolism 2004, 53, 532–537 Google Scholar

About the article

Received: 2015-08-04

Accepted: 2015-10-02

Published Online: 2015-12-18

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0015.

Export Citation

© 2015 Sungho Lee et al. . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Uresha Patel, Laura Macri‐Pellizzeri, Kazi M. Zakir Hossain, Brigitte E. Scammell, David M. Grant, Colin A. Scotchford, Alex C. Hannon, Andrew R. Kennedy, Emma R. Barney, Ifty Ahmed, and Virginie Sottile
Journal of Tissue Engineering and Regenerative Medicine, 2019, Volume 13, Number 3, Page 396
U. Patel, R.M. Moss, K.M.Z Hossain, A.R. Kennedy, E.R. Barney, I. Ahmed, and A.C. Hannon
Acta Biomaterialia, 2017, Volume 60, Page 109

Comments (0)

Please log in or register to comment.
Log in