Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Characterization of Y2O3 and CeO2 doped SiO2-SrO-Na2O glasses

Lana M. Placek / Timothy J. Keenan / Fathima Laffir
  • Corresponding author
  • Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aisling Coughlan
  • Corresponding author
  • School of Materials Engineering, Purdue University, West Lafayette, IN, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony W. Wren
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/bglass-2015-0016


The structural effects of yttrium (Y) and cerium (Ce) are investigated when substituted for sodium (Na) in a 0.52SiO2–0.24SrO–(0.24−x)Na2O–xMO (where x = 0.08; MO = Y2O3 and CeO2) glass series. Network connectivity (NC) was calculated assuming both Y and Ce can act as a network modifier (NC = 2.2) or as a network former (NC up to 2.9). Thermal analysis showed an increase in glass transition temperature (Tg) with increasing Y and Ce content, Y causing the greater increase from the control (Con) at 493∘C to 8 mol% Y (HY) at 660∘C. Vickers hardness (HV) was not significantly different between glasses. 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) did not show peak shift with addition of Y, however Ce produced peak broadening and a negative shift in ppm. The addition of 4 mol% Ce in the YCe and LCe glasses shifted the peak from Con at −81.3 ppm to −82.8 ppm and −82.7 ppm respectively; while the HCe glass produced a much broader peak and a shift to −84.8 ppm. High resolution X-ray Photoelectron Spectroscopy for the O 1s spectral line showed the ratio of bridging (BO) to non-bridging oxygens (NBO), BO:NBO,was altered,where Con had a ratio of 0.7, HY decreased to 0.4 and HCe to 0.5.

Keywords: Yttrium Cerium Bioactive Glass; X-ray Photoelectron Spectroscopy; MAS-NMR


  • [1] Cao W., Hench L.L., Bioactive Materials, Ceram Int 1996, 22, 439–507. CrossrefGoogle Scholar

  • [2] Bunting S., Di Silvio L., Deb S., Hall S., Bioresorbable Glass Fibres Facilitate Peripheral Nerve Regeneration, J Hand Surg 2005, 30B, 242–7. CrossrefGoogle Scholar

  • [3] Jeans L.A., Gilchrist T., Healy D., Peripheral Nerve Repair by Means of a Flexible Biodegradable Glass FibreWrap: A Comparison with Microsurgical Epineurial Repair, J Plast Reconstr Aes 2007, 60, 1302–8. CrossrefGoogle Scholar

  • [4] Shelby J.E., Introduction to Glass Science and Technology, 2nd ed., Royal Society of Chemistry, Cambridge, UK, 2005. Google Scholar

  • [5] Serra J., González P., Liste S., Serra C., Chiussi S., León B., Pérez-Amor M., Ylänen H. O., Hupa M., Ftir and Xps Studies of Bioactive Silica Based Glasses, J Non-Cryst Solids 2003, 332, 20–7. Google Scholar

  • [6] Lewis G., Towler M.R., Boyd D., German M.J., Wren A.W., Clarkin O.M., Yates A., Evaluation of Two Novel Aluminum-Free, Zinc- Based Glass Polyalkenoate Cements as Alternatives to Pmma Bone Cement for Use in Vertebroplasty and Balloon Kyphoplasty, J Mater Sci: Mater Med 2010, 21, 59–66. CrossrefGoogle Scholar

  • [7] O’donnell M.D., Candarlioglu P.L., Miller C.A., Gentleman E., Stevens M.M.,Materials Characterisation and Cytotoxic Assessment of Strontium-Substituted Bioactive Glasses for Bone Regeneration, J Mater Chem 2010, 20, 8934–41. CrossrefGoogle Scholar

  • [8] Tyas M.J., Burrow M.F., Adhesive Restorative Materials: A Review, Aust Dent J 2004, 49, 112–21. CrossrefGoogle Scholar

  • [9] Leonelli C., Lusvardi G., Malavasi G., Menabue L., Tonelli M., Synthesis and Characterization of Cerium-Doped Glasses and in Vitro Evaluation of Bioactivity, J Non-Cryst Solids 2003, 316, 198–216. Google Scholar

  • [10] Vallet-Regi M., J. Salinas A., Roman J., Gil M., Effect of Magnesium Content on the in Vitro Bioactivity of Cao-Mgo-SiO2-P2O5 Sol-Gel Glasses, J Mater Chem 1999, 9, 515–8. CrossrefGoogle Scholar

  • [11] Massera J., Hupa L., Hupa M., Influence of the Partial Substitution of Cao with Mgo on the Thermal Properties and in Vitro Reactivity of the Bioactive Glass S53p4, J Non-Cryst Solids 2012, 358, 2701–7. Google Scholar

  • [12] Wren A.W., Coughlan A., Placek L., Towler M.R.,GalliumContaining Glass Polyalkenoate Anti-Cancerous Bone Cements: Glass Characterization and Physical Properties, J Mater Sci: Mater Med 2012, 23, 1823–33. CrossrefGoogle Scholar

  • [13] Keenan T.J., Placek L.M., Mcginnity T.L., Towler M.R., Hall M.M., Wren A.W., Relating Ion Release and Ph to in Vitro Cell Viability for Gallium-Inclusive Bioactive Glasses, JMater Sci 2016, 51, 1107–20. CrossrefGoogle Scholar

  • [14] Hoppe A., Güldal N.S., Boccaccini A.R., A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics, Biomaterials 2011, 32, 2757–74. CrossrefGoogle Scholar

  • [15] Roberts H.W., Vandewalle K.S., Berzins D.G., Fracture Resistance of Amalgam/Glass-Polyalkenoate Open Sandwich Class II Restorations: An in Vitro Study, J Dent 2008, 36, 873–7. CrossrefGoogle Scholar

  • [16] Yoshida Y., Vanmeerbeek B., Nakayama Y., Snauwaert J., Hellemans L., Lambrechts P., Vanherle G., Wakasa K., Evidence of Chemical Bonding at Biomaterial-Hard Tissue Interfaces, J Dent Res 2000, 79, 709–14. CrossrefGoogle Scholar

  • [17] Gao W., Smales R.J., Gale M.S., Flouride Release/Uptake from Newer Glasss-Ionomer Cements Used with the Art Approach, Am J Dent 2000, 13, 201–4. Google Scholar

  • [18] O’donnell M.D., Hill R.G., Influence of Strontium and the Importance of Glass Chemistry and Structure When Designing Bioactive Glasses for Bone Regeneration, Acta Biomater 2010, 6, 2382–5. CrossrefGoogle Scholar

  • [19] Massera J., Hupa L., Influence of Sro Substitution for Cao on the Properties of Bioactive Glass S53p4, J Mater Sci Mater Med 2014, 25, 657–68. CrossrefGoogle Scholar

  • [20] Gorustovich A.A., Steimetz T., Cabrini R.L., Porto Lopez J.M., Osteoconductivity of Strontium-Doped Bioactive Glass Particles: A Histomorphometric Study in Rats, J BiomedMater Res Pt A 2010, 92, 232–7. Google Scholar

  • [21] Nagaraja Upadhya P., Kishore G., Glass Ionomer Cement – the Different Generations, Trends Biomater Artif Organs 2005, 18, 158–65. Google Scholar

  • [22] Grifln S.G., Hill R.G., Influence of Glass Composition on the Properties of Glass Polyalkenoate Cements. Part I: Influence of Aluminium to Silicon Ratio, Biomaterials 1999, 20, 1579–86. CrossrefGoogle Scholar

  • [23] Clarkin O., Boyd D., Towler M.R., Strontium-Based Glass Polyalkenoate Cements for Luting Applications in the Skeleton, J Biomater Appl 2010, 24, 483–502. CrossrefGoogle Scholar

  • [24] Miguez-Pacheco V., Hench L.L., Boccaccini A.R., Bioactive Glasses Beyond Bone and Teeth: Emerging Applications in Contact with Soft Tissues, Acta Biomater 2015, 13, 1–15. CrossrefGoogle Scholar

  • [25] Kehoe S., Zhang X.F., Boyd D., Fda Approved Guidance Conduits andWraps for Peripheral Nerve Injury: A Review ofMaterials and Eflcacy, Injury 2012, 43, 553–72. CrossrefGoogle Scholar

  • [26] Midha R., Emerging Techniques for Nerve Repair: Nerve Transfers and Nerve Guidance Tubes, Clin Neur 2006, 53, 185–90. Google Scholar

  • [27] Choi D.W., Calciumand Excitotoxic Neuronal Injury, Ann NY Acad Sci 1994, 747, 162–71. Google Scholar

  • [28] Wolf J.A., Stys P.K., Lusardi T., Meaney D., Smith D.H., Traumatic Axonal Injury Induces Calcium Influx Modulated by Tetrodotoxin-Sensitive Sodium Channels, J Neurosci 2001, 21, 1923–30. Google Scholar

  • [29] Lopachin R.M., Lehning E.J., Mechanism of Calcium Entry During Axon Injury and Degeneration, Toxicol Appl Pharm 1997, 143, 233–44. CrossrefGoogle Scholar

  • [30] Schubert D., Dargusch R., Raitano J., Chan S.-W., Cerium and YttriumOxide Nanoparticles Are Neuroprotective, Biochem Biophys Res Com 2006, 342, 86–91. Google Scholar

  • [31] Marie P.J., Ammann P., Boivin G., Rey C., Mechanisms of Action and Therapeutic Potential of Strontiumin Bone, Calcified Tissue Int 2001, 69, 121–9. CrossrefGoogle Scholar

  • [32] Das M., Patil S., Bhargava N., Kang J.-F., Riedel L.M., Seal S., Hickman J.J., Auto-Catalytic Ceria Nanoparticles Offer Neuroprotection to Adult Rat Spinal Cord Neurons, Biomaterials 2007, 28, 1918–25. CrossrefGoogle Scholar

  • [33] Marquardt L.M., Day D., Sakiyama-Elbert S.E., Harkins A.B., Effects of Borate-Based Bioactive Glass on Neuron Viability and Neurite Extension, J BiomedMater Res Pt A 2014, 102, 2767–75. Google Scholar

  • [34] Cacaina D., Ylanen H., Hupa M., Simon S., Study of YttriumContaining Bioactive Glasses Behaviour in Simulated Body Fluid., J Mater Sci: Mater Med 2006, 17, 709–16. CrossrefGoogle Scholar

  • [35] Hill R.G., Brauer D.S., Predicting the Bioactivity of Glasses Using the Network Connectivity or Split Network Models, J Non-Cryst Solids 2011, 357, 3884–7. Google Scholar

  • [36] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R.G., Structural Analysis of Bioactive Glasses, J Non-Cryst Solids 2005, 351, 173–83. Google Scholar

  • [37] Hill R.G., Brauer D.S., Predicting the Glass Transition Temperature of Bioactive Glasses from Their Molecular Chemical Composition, Acta Biomater 2011, 7, 3601–5. CrossrefGoogle Scholar

  • [38] O’donnell M.D., Predicting Bioactive Glass Properties from the Molecular Chemical Composition: Glass Transition Temperature, Acta Biomater 2011, 7, 2264–9. CrossrefGoogle Scholar

  • [39] Zhang P., Dunlap C., Florian P., Grandinetti P.J., Farnan I., Stebbins J.F., Silicon Site Distributions in an Alkali Silicate Glass Derived by Two-Dimensional 29si Nuclear Magnetic Resonance, J Non-Cryst Solids 1996, 204, 294–300. Google Scholar

  • [40] Lockyer M.W.G., Holland D., Dupree R., Nmr Investigation of the Structure of Some Bioactive and Related Glasses, J Non-Cryst Solids 1995, 188, 207–19. Google Scholar

  • [41] Marsich L., Moimas L., Sergo V., Schmid C., Raman Spectroscopic Study of Bioactive Silica-Based Glasses; the Role of the Alkali/Alkali Earth Ratio on the Non-Bridging Oxygen/Bridging Oxygen (Nbo/Bo) Ratio, Spectroscopy 2009, 23, 227–232. CrossrefGoogle Scholar

  • [42] Wang H.B., Mullins M.E., Cregg J.M., Mccarthy C.W., Gilbert R.J., Varying the Diameter of Aligned Electrospun Fibers Alters Neurite Outgrowth and Schwann Cell Migration, Acta Biomater 2010, 6, 2970–8. CrossrefGoogle Scholar

  • [43] Yildirim E., Dupree R., Investigation of Al-O-Al Sites in an Na- Aluminosilicate Glass, Bull Mater Sci 2004, 27, 269–72. CrossrefGoogle Scholar

  • [44] Wren A.W., Keenan T., Coughlan A., Laflr F.R., Boyd D., Towler M.R., Hall M.M., Characterisation of Ga2O3–Na2O–CaO–ZnO– SiO2 Bioactive Glasses, J Mater Sci 2013, 48, 3999–4007. Google Scholar

  • [45] Du J., Kokou L., Rygel J.L., Chen Y., Pantano C.G., Woodman R., Belcher J., Structure of Cerium Phosphate Glasses: Molecular Dynamics Simulation, J Am Ceram Soc 2011, 94, 2393–401. CrossrefGoogle Scholar

  • [46] Schaller T., Stebbins J.F., The Structural Role of Lanthanum and Yttrium in Aluminosilicate Glasses: A 27Al and 17O MAS NMR Study, J Phys Chem B 1998, 102, 10690–7. CrossrefGoogle Scholar

  • [47] Christie J.K., Tilocca A., Short-Range Structure of Yttrium Alumino-Silicate Glass for Cancer Radiotherapy: Car–Parrinello Molecular Dynamics Simulations, Adv Eng Mater 2010, 12, B326–B30. CrossrefGoogle Scholar

  • [48] Peitl FilhoO., Latorre G.P., Hench L.L., Effect of Crystallization on Apatite-Layer Formation of Bioactive Glass 45%, J BiomedMater Res 1996, 30, 509–14. Google Scholar

  • [49] Elbatal H.A., Azooz M.A., Khalil E.M.A., SoltanMonemA., Hamdy Y.M., Characterization of Some Bioglass–Ceramics,Mater Chem Phy 2003, 80, 599–609. CrossrefGoogle Scholar

  • [50] Christie J.K., Ainsworth R.I., De Leeuw N.H., Investigating Structural Features Which Control the Dissolution of Bioactive Phosphate Glasses: Beyond the Network Connectivity, J Non-Cryst Solids 2015, In Press. Google Scholar

  • [51] Jones J.R., Review of Bioactive Glass: From Hench to Hybrids, Acta Biomater 2013, 9, 4457–86. CrossrefGoogle Scholar

  • [52] Christie J.K., Tilocca A., Aluminosilicate Glasses as Yttrium Vectors for in Situ Radiotherapy: Understanding Composition- Durability Effects through Molecular Dynamics Simulations, Chem Mater 2010, 22, 3725–34. CrossrefGoogle Scholar

  • [53] Christie J.K., Malik J., Tilocca A., Bioactive Glasses as Potential Radioisotope Vectors for in Situ Cancer Therapy: Investigating the Structural Effects of Yttrium, Phys Chem Chem Phys 2011, 13, 17749–55. CrossrefGoogle Scholar

  • [54] Cacaina D., Ylanen H., Simon S., Hupa M., The Behaviour of Selected Yttrium Containing Bioactive Glass Microspheres in Simulated Body Environments, J Mat Sci Mat Med 2008, 19, 1225– 33. CrossrefGoogle Scholar

  • [55] Calleja F.J.B., Sanditov D.S., Privalko V.P., Review: The Microhardness of Non-Crystalline Materials, J Mater Sci, 2002, 37, 4507–16. CrossrefGoogle Scholar

  • [56] Smedskjaer M.M., Topological Model for Boroaluminosilicate Glass Hardness, Frontiers Mat 2014, 1. Google Scholar

  • [57] Smedskjaer M.M., Mauro J.C., Yue Y., Prediction of Glass Hardness Using Temperature-Dependent Constraint Theory, Phy Rev Let 2010, 105, 115503. CrossrefGoogle Scholar

  • [58] Magi M., Lippmaa E., Samoson A., Engelhardt G., Grimmer A.R., Solid-State High-Resolution Silicon-29 Chemical Shifts in Silicates, J Phy Chem 1984, 88, 1518–22. CrossrefGoogle Scholar

  • [59] Mathew R., Stevensson B., Tilocca A., Edén M., Toward a Rational Design of Bioactive Glasses with Optimal Structural Features: Composition–Structure Correlations Unveiled by Solid- State Nmr and Md Simulations, J Phy Chem. B 2014, 118, 833– 44. Google Scholar

  • [60] Gavarini S., Guittet M.J., Trocellier P.,Gautier-Soyer M., Carrot F., Matzen G., CeriumOxidation During Leaching of Ceysialo Glass, J Nucl Mater 2003, 322, 111–8. Google Scholar

  • [61] 4.1 V. NIST X-ray Photoelectron Spectroscopy Database (National Institute of Standards and Technology, Gaithersburg, 2012). Google Scholar

  • [62] Serra J.G.P., Liste S., Chiussi S., León B., Pérez-Amor M., Ylänen H.O., Hupa M., Influence of the Non-Bridging Oxygen Groups on the Bioactivity of Silicate Glasses, JMater Sci:Mater Med 2002, 13, 1221–5. CrossrefGoogle Scholar

About the article

Received: 2015-07-30

Accepted: 2015-12-13

Published Online: 2015-12-30

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0016.

Export Citation

© 2015 L. M. Placek et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

LM Placek, TJ Keenan, and AW Wren
Journal of Biomaterials Applications, 2016, Volume 31, Number 2, Page 165

Comments (0)

Please log in or register to comment.
Log in