Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
See all formats and pricing
More options …

Angiogenic Effect of Bioactive Borate Glass Microfibers and Beads in the Hairless Mouse

Richard J. Watters
  • Corresponding author
  • Department of Biological Sciences and 2Graduate Center for Materials Research, Missouri University of Science and Technology, Rolla, MO 65401
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roger F. Brown
  • Corresponding author
  • Department of Biological Sciences and 2Graduate Center for Materials Research, Missouri University of Science and Technology, Rolla, MO 65401
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Delbert E. Day
  • Corresponding author
  • Graduate Center for Materials Research Missouri University of Science and Technology
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-24 | DOI: https://doi.org/10.1515/bglass-2015-0017


The purpose of this project was to investigate the angiogenic mechanism of bioactive borate glass for soft tissue repair in a ‘hairless’ SKH1 mouse model. Subcutaneous microvascular responses to bioactive glass microfibers (45S5, 13-93B3, and 13-93B3Cu) and bioactive glass beads (13-93, 13-93B3, and 13-93B3Cu) were assessed via: noninvasive imaging of skin microvasculature; histomorphometry of microvascular densities; and quantitative PCR measurements of mRNA expression of VEGF and FGF-2 cytokines. Live imaging via dorsal skin windows showed the formation at twoweeks of a halo-like structure infused with microvessels surrounding implanted boratebased 13-93B3 and 13-93B3Cu glass beads, a response not observed with silicate-based 13-93 glass beads. Quantitative histomorphometry of tissues implanted with plugs of 45S5, 13-93B3, and 13-93B3Cu glass microfibers revealed microvascular densities that were 1.6-, 2.3-, and 2.7-times higher, respectively, than the sham control valueswhereas 13-93, 13-93B3, and 13-93B3Cu glass beads caused the microvascular density to increase 1.3-, 1.6-, and 2.5-fold, respectively, relative to sham controls. Quantitative PCR measurements indicate a marginally significant increased expression of VEGF mRNA in tissues with 13-93B3Cu glass beads, an outcome that supported the hypothesis that copper-doped borate glass could promote VEGF expression followed by angiogenesis for enhanced wound healing.

Keywords: Angiogenesis; copper-doped bioactive borate glass; bioactive glass microfibers; bioactive glass beads; in vivo; soft tissue


  • [1] Brown R., Watters R., Day D., Angiogenic Response of Bioactive Borate Glass Beads & Microfibers in “Hairless” Mice, The American Ceramic Society-Glass & Optical Materials Division and Deutsche Glastechnische Gesellschaft Joint Annual Meeting, Miami, FL, 17–21 May 2015. Google Scholar

  • [2] Chandan S., Gordillo M., Sashwati R., Kirsner R., Lambert L., Hunt T.K., et al., Human skin wounds: a major and snowballing threat to public health and the economy, Wound Repair Regen 2009, 17, 763–771. Web of ScienceCrossrefGoogle Scholar

  • [3] Wu S., Driver V., Wrobel J., Armstrong D., Foot ulcers in the diabetic patient, prevention and treatment, Vasc Health Risk Manag 2007, 3, 65–76. Google Scholar

  • [4] Caputo G., Cavanagh P., Ulbrecht J., Gibbons G., Karchmer A., Assessment and management of foot disease in patients with diabetes, New Engl J Med 1994, 13, 854-860. CrossrefGoogle Scholar

  • [5] Keshaw H., Forbes A., Day R., Release of angiogenic growth factor from cells encapsulated in alginate beads with bioactive glass, Biomaterials 2005, 26, 4171–4179. CrossrefGoogle Scholar

  • [6] Barralet J., Gbureck U., Habibovic P., Vorndran E., Gerard C., Doillon C., Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release, Tissue Eng 2009, 15, 1601–1608. CrossrefGoogle Scholar

  • [7] Li J., Zhang Y., Kirsner R., Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix, Microsc Res Tech 2003, 60, 107–114. CrossrefGoogle Scholar

  • [8] Cole R., Liu F., Herron B., Imaging of angiogenesis: past, present and future, In: A. Mendez – Vilas, J. Diaz (Eds.), Microscopy: Science, Technology, Applications and Education, Vol 3, Badajoz, Spain, 2010. Google Scholar

  • [9] Folkman J., Shing Y., Angiogenesis, J Biol Chem 1992, 267, 10931–10934. Google Scholar

  • [10] Shih S., Robinson G., Perruzzi C., Calvo A., Desai K., Green J., et al., Molecular profiling of angiogenesis markers, Am J Pathol 2002, 161, 35–40. Google Scholar

  • [11] ClaytonW., Elasy T., A review of the pathophysiology, classification, and treatment of foot ulcers in diabetic patients, Clin Diabetes 2009, 27, 52–58. CrossrefGoogle Scholar

  • [12] Mohammad G., Pandey H., Tripathi K., Diabetic wound healing and its angiogenesis with special reference to nanoparticles, Dig J Nanomater Bios 2008, 3, 203–208. Google Scholar

  • [13] Falanga V., Wound healing and its impairment in the diabetic foot, Lancet 2005, 366, 1736–43. Google Scholar

  • [14] Demidova-Rice T., Durham J., Herman I., Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing, Adv Wound Care 2012, 1, 17–22. Google Scholar

  • [15] Papanas N., Efstratios M., Becaplermin gel in the treatment of diabetic neuropathic foot ulcers, Clin Interv Aging, Jun 2008, 3(2), 233–240. Google Scholar

  • [16] Giavazzi R., Sennino B., Coltrini D., Garofalo A., Dossi R., Ronca R., et al., Distinct role of fibroblast growth factor-2 and vascular endothelial growth factor on tumor growth and angiogenesis, Am J Pathol, Jun 2003, 162, 1913–1926. CrossrefGoogle Scholar

  • [17] Witkowski J., Parish L., Rational approach to wound care, Int J Dermatol 1992, 31, 27–28. CrossrefGoogle Scholar

  • [18] Fang R., Galiano R., A review of becaplermin gel in the treatment of diabetic neuropathic foot ulcers, Biologics, 2008, 2, 1–12. Google Scholar

  • [19] Hoppe A., Mouriñob V., Boccaccini A., Therapeutic inorganic ions in bioactive glasses to enhance bone formation and beyond, Biomater Sci 2013, 1, 254–256. Web of ScienceCrossrefGoogle Scholar

  • [20] Chen Q., Zhu C., Thouas G., Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites, Prog Biomater 2012, 1(1), 2. CrossrefGoogle Scholar

  • [21] Haro Durand L.A., Gongora A., Porto-Lopez J.M., Boccaccini A.R., Zago M.P., Baldi A., et al., In vitro endothelial cell response to ionic dissolution products from a boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system, J Mater Chem B 2014, 2, 7620–7630. Web of ScienceCrossrefGoogle Scholar

  • [22] Haro Durand L.A., Vargas G.E., Romero N.M., Vera-Mesones R., Porto-Lopez J.M., Boccaccini A.R., et al., Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass, J Mater Chem B 2015, 3, 1142–1148. CrossrefWeb of ScienceGoogle Scholar

  • [23] Jung S., Borate Based Bioactive Glass Scaffolds for Hard and Soft Tissue Engineering, Ph.D Dissertation, Missouri University of Science and Technology, Rolla, MO, 2010. Google Scholar

  • [24] Taylor P., personal communication, Phelps County Regional Medical Center, Rolla, MO. 2012. Google Scholar

  • [25] Lin Y., Brown R., Jung S., Day D., Angiogenic effects of borate glass microfibers in a rodent model, J Biomed Mat Res A 2014, 102(12), 4491–4499. Google Scholar

  • [26] Eliza M., Ben I., Reuven B., Histopathological periodic acid– schiff stains of nail clippings as a second-line diagnostic tool in onychomycosis, Am J Dermatopath 2012, 34, 270–273. CrossrefWeb of ScienceGoogle Scholar

  • [27] Chomczynski P., Sacchi N., Single-step method of RNA isolation by acid guanidiniumthiocyanate-phenol-chloroform extraction, Anal Biochem 1987, 162, 156–9. CrossrefGoogle Scholar

  • [28] Chomczynski P., Sacchi N., The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on, Nat Protoc 2006, 1, 581– 585. CrossrefGoogle Scholar

  • [29] Wong M., Medrano J., Real-time PCR for mRNA quantitation, BioTechniques 2005, 39, 75–85. CrossrefGoogle Scholar

  • [30] Livak K., Schmittgen T., Analysis of relative gene expression data using real-time quantitative PCR and the 2-Google Scholar

  • [Delta]Google Scholar

  • [Delta]Ct method, Methods 2001, 25, 402–408. Google Scholar

  • [31] Liu D., Handbook of Nucleic Acid Purification, CLC press, Boca Raton, FL. 2009. Google Scholar

  • [32] Zhao S., Li L., Wang H., Zhang Y., Cheng X., Zhou N., et al., Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal fullthickness skin defects in a rodent model, Biomaterials 2015, 53, 379–391. Web of ScienceCrossrefGoogle Scholar

  • [33] Kucan J., Robson M., Heggers J., Ko F., Comparison of silver sulfadiazine, povidone-iodine and physiologic saline in the treatment of chronic pressure ulcers, J Am Geriatr Soc 1981, 29, 232– 235. CrossrefGoogle Scholar

  • [34] Harris E., A requirement for copper in angiogenesis, Nutr Rev 2004, 62, 60–64. CrossrefGoogle Scholar

  • [35] Hu G., Copper stimulates proliferation of human endothelial cells under culture, J Cellular Biochem 1998, 69, 326–335. CrossrefGoogle Scholar

  • [36] Sen C.K., Copper-induced vascular endothelial growth factor expression and wound healing, Am J Physiol 2002, 282, H1821– H1827. Google Scholar

  • [37] Emanueli C., Madeddu P., Angiogenesis gene therapy to rescue ischemic tissues: achievements and future directions, Brit J Pharmacol 2001, 133, 951–958. Google Scholar

About the article

Received: 2015-10-15

Accepted: 2015-12-05

Published Online: 2015-12-24

Citation Information: Biomedical glasses, Volume 1, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2015-0017.

Export Citation

© 2015 R. J. Watters et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Saeid Kargozar, Francesco Baino, Sepideh Hamzehlou, Robert G. Hill, and Masoud Mozafari
Trends in Biotechnology, 2018, Volume 36, Number 4, Page 430

Comments (0)

Please log in or register to comment.
Log in