Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

After bleaching enamel remineralization using a bioactive glass-ceramic (BioSilicate®)

A. N. S. Rastelli
  • Corresponding author
  • Univ. Estadual Paulista – UNESP, Araraquara School of Dentistry, Department of Restorative Dentistry, Araraquara, São Paulo, Brazil; Email: alras telli@foar.unesp.br; Tel.: +55 (016) 3301-6393; Fax: +55 (016) 3301- 6393; Corresponding Address: Humaita St. 1680, Araraquara, SP, 14.801–903 Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Nicolodelli
  • Corresponding author
  • Brazilian Agricultural Research Corporation – Embrapa, CNPDIA, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ R. A. Romano
  • Corresponding author
  • Brazilian Agricultural Research Corporation – Embrapa, CNPDIA, São Carlos, São Paulo, Brazil; University of São Paulo – USP, Physics Institute of São Carlos – IFSC, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. M. B. P. Milori
  • Corresponding author
  • Brazilian Agricultural Research Corporation – Embrapa, CNPDIA, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. L. O. Perazzoli
  • Corresponding author
  • Brazilian Agricultural Research Corporation – Embrapa, CNPDIA, São Carlos, São Paulo, Brazil; Federal University of São Carlos - UFSCar, Material Engineering Department, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. J. Ferreira
  • Corresponding author
  • Brazilian Agricultural Research Corporation – Embrapa, CNPDIA, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. C. B. Pedroso
  • Corresponding author
  • Univ. Estadual Paulista – UNESP, Araraquara School of Dentistry, Department of Restorative Dentistry, Araraquara, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. T. Souza
  • Corresponding author
  • Federal University of São Carlos - UFSCar, Material Engineering Department, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ O. Peitl
  • Corresponding author
  • Federal University of São Carlos - UFSCar, Material Engineering Department, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ E. D. Zanotto
  • Corresponding author
  • Federal University of São Carlos - UFSCar, Material Engineering Department, São Carlos, São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-29 | DOI: https://doi.org/10.1515/bglass-2016-0001

Abstract

Tooth bleaching agents may weaken the tooth structure, therefore, it is important to minimize any risks of enamel and dentine damage caused by them. In this way, different materials have been used to avoid or minimize the tooth damage during bleaching. Recently, bioactive glasses have been demonstrated to be effective in mineralization of dental structures. Therefore, this study evaluated the effect of BioSilicate® (a polycrystalline bioactive glass-ceramic) after bleaching by Laser-induced breakdown spectroscopy (LIBS) technique. Bovine dental blocks with 4 × 4 × 3 mm were obtained (n = 20), sequentially embedded in epoxy resin and then polished. Bleaching was performed using 35% hydrogen peroxide (Whiteness HP). Calcium (Ca) and phosphate (P) intensity values by LIBSwere obtained before the treatment (T0, baseline – control Group), after bleaching (T1), and after BioSilicate® application (T2). The use of BioSilicate® after bleaching showed to be an optimal way to remineralize enamel surface making BioSilicate® application a promising adjunct step to avoid or minimize the mineral loss on enamel surface after bleaching.

Keywords: Dental Enamel; BioSilicate®; Hydrogen Peroxide; Mineral Loss; Remineralization; Spectroscopy; Tooth Bleaching

References

  • [1] Ribeiro D.A., Marques M.E.A., Salvadori D.M.F., Study of DNA damage induced by dental bleaching agents in vitro, Braz. Oral Res., 2006, 20, 47–51. Google Scholar

  • [2] Suemori T., Kato J., Nakazawa T., Akashi G., Igarashi A., Hirai Y., et al., Effects of light irradiation on bleaching by a 3.5% hydrogen peroxide solution containing titanium dioxide, Laser Phys. Lett., 2008, 5, 379–383. CrossrefGoogle Scholar

  • [3] Haywood V.B., Heymann H.O., Nightguard vital bleaching, Quintessence Int., 1989, 20, 173–6. Google Scholar

  • [4] Cavalli V., Giannini M., Carvalho R.M., Effect of carbamide peroxide bleaching agents on tensile strength of human enamel, Dent. Mater., 2004, 8, 733–9. CrossrefGoogle Scholar

  • [5] Cavalli V., Reis A.F., Giannini M., Ambrosano G.M.B., The effect of elapsed time following bleaching on enamel bond strength of resin composite, Oper. Dent., 2001, 26, 597–602. Google Scholar

  • [6] Seghi R.R., Denry I., Effects of external bleaching on indentation and abrasion characteristics of human enamel in vitro, J. Dent. Res., 1992, 71, 1340–4. CrossrefGoogle Scholar

  • [7] Price R.B.T., Sedarous M., Hiltz G.S., The pH of tooth-whitening products, J. Can. Dent. Assoc., 2000, 66, 421–6. Google Scholar

  • [8] Rodrigues J.A., Oliveira G.P.F., Amaral C.M., Effect of thickener agents on dental enamel microhardness submitted to at-home bleaching, Braz. Oral Res., 2007, 21(2), 170–175. Google Scholar

  • [9] Basting R.T., Rodrigues Junior A.L., Serra M.C., The effects of seven carbamide peroxide bleaching agents on enamel microhardness over time, J. Am. Dent. Assoc., 2003, 134(10), 1335– 1342. CrossrefGoogle Scholar

  • [10] Rodrigues J.A., Basting R.T., Serra M.C., Rodrigues Junior A.L., Effects of 10% carbamide peroxide bleaching on enamel microhardness at different bleaching times, Am. J. Dent., 2001, 14(2), 67–71. Google Scholar

  • [11] Rodrigues J.A., Marchi G.M., Ambrosano G.M.B., Heymann H.O., Pimenta L.A.F., Microhardness evaluation of in situ vital bleaching on human dental enamel using a novel study design, Dent. Mater., 2005, 21(11), 1059–1067. CrossrefGoogle Scholar

  • [12] Oltu Ü., Gürgan S., Effects of three concentrations of carbamide peroxide on the structure of enamel, J. Oral Rehabil., 2000, 27(4), 332–340. CrossrefGoogle Scholar

  • [13] Gürgan S., Bolay S., Alaçam R., In vitro adherence of bacteria to bleached or unbleached enamel surfaces, J. Oral Rehabil., 1997, 24, 624–627. CrossrefGoogle Scholar

  • [14] Wiegand M., Schreier M., Attin T., Effect of different fluoridation regimes on the microhardness of bleached enamel, Oper. Dent., 2007, 32, 610–615. CrossrefGoogle Scholar

  • [15] Attin T., Müller A., Patyk A., Lennon A.M., Influence of different bleaching systems on fracture toughness and hardness of enamel, Oper. Dent., 2004, 29, 188–195. Google Scholar

  • [16] Hegedüs C., Bistey T., Flóra-Nagy E., Keszthelyi G., Jenei A., An atomic force microscopy study on the effect of bleaching agents on enamel surface, J. Dent., 1999, 27, 509–515. CrossrefGoogle Scholar

  • [17] Bollineni S., Janga R.K., Venugopal L., Reddy I.R., Babu P.R., Kumar S.S., Role of fluoridated carbamide peroxide whitening gel in the remineralization of demineralized enamel: An in vitro study, J. Int. Soc. Prev. Community Dent., 2014, 4(2), 117–121. Google Scholar

  • [18] Miranda C.B., Pagani C., Benetti A.R.,Matuda F.S., Evaluation of the bleached human enamel by Scanning Electron Microscopy, J. Appl. Oral Sci., 2005, 13(2), 204–211. CrossrefGoogle Scholar

  • [19] Pinto C.F., Oliveira R., Cavalli V., Giannini M., Peroxide bleaching agent effects on enamel surface microhardness, roughness and morphology, Braz. Oral Res., 2004, 18(4), 306–311. Google Scholar

  • [20] Bizhang M., Seemann R., Duve G., Romhild G., Altenburger J.M., Jahn K.R., et al., Demineralization effects of 2 bleaching procedures on enamel surfaces with and without post- treatment fluoride application, Oper. Dent., 2006, 31(6), 705–709. CrossrefGoogle Scholar

  • [21] Attin T., Kielbassa A.M., Schwanenberg M., Hellwig E., Effect of fluoride treatment on remineralization of bleached enamel, J. Oral Rehabil., 1997, 24(4), 282–286. CrossrefGoogle Scholar

  • [22] Hench L.L., The story of Bioglass, J. Mater. Sci. Mater. Med., 2006, 17(11), 967–978. CrossrefGoogle Scholar

  • [23] GillamG.D., Tang J.Y., Mordan N.J.,Newman H.N., The effects of a novel Bioglass dentifrice on dentine sensitivity: a scanning electron microscopy investigation, J. Oral Rehabil., 2002, 29(4), 305– 313. CrossrefGoogle Scholar

  • [24] Lee B.S., Chang C.W., ChenW.P., LanW.H., Lin C.P., In vitro study of dentin hypersensitivity treated by Nd:YAP laser and bioglass, Dent. Mater., 2005, 21(5), 511–519. CrossrefGoogle Scholar

  • [25] Lee B.S., Kang S.H., Wang Y.L., Lin F.H., Lin C.P., In vitro study of dentinal tubule occlusion with sol-gel DP-bioglass for treatment of dentin hypersensitivity, Dent. Mater. J., 2007, 26(1), 52–61. CrossrefGoogle Scholar

  • [26] Tirapelli C., Panzeri H., Soares R.G., Peitl O., Zanotto E.D., A novel bioactive glass- ceramic for treating dentin hypersensitivity, Braz. Oral Res., 2010, 24(4), 381–387. CrossrefGoogle Scholar

  • [27] Moura J., Teixeira L.N., Ravagnani C., Peitl O., Zanotto E.D., Beloti M.M., et al., In vitro osteogenesis on a highly bioactive glassceramic (Biosilicate), J. Biomed.Mater. Res. A., 2007, 82(3), 545– 557. CrossrefGoogle Scholar

  • [28] Crovace, M.C., Souza M.T., Chinaglia C.R., Peitl O., Zanotto E.D., Biosilicater – A multipurpose, highly bioactive glass-ceramic. In vitro, in vivo and clinical trials, J. Non Cryst. Sol., 2015, DOI: 10.1016/j.jnoncrysol.2015.03.022 (in press). CrossrefGoogle Scholar

  • [29] Copeland S.R., Sponheimer M., le Roux P.J., Grimes V., Lee– Thorp J.A., de Ruiter D.J., et al., Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods, J. Mass Spectrom., 2008, 22(20), 3187–3194. Google Scholar

  • [30] Fergusson J.E., Purchase N.G., The analysis and levels of lead in human teeth: a review, Environ. Pollut., 1987, 46(1), 11–44. CrossrefGoogle Scholar

  • [31] Carvalho M.L., Casaca C., Pinheiro T., Marques J.P., Chevallier P., Cunha A.S., Analysis of human teeth and bones from the chalcolithic period by X-ray spectrometry, Nucl. Instrum. Meth. Phys. Res. B., 2000, 4, 559–565. CrossrefGoogle Scholar

  • [32] Brenn R., Haug Ch., Klar U., Zander S., Alt K.W., Jamieson D.N., et al., Post-mortem intake of lead in 11th century human bones and teeth studied by milli- and microbeam PIXE and RBS, Nucl. Instrum. Meth. Phys. Res. B., 1999, 1–4, 270–274. Google Scholar

  • [33] Stermer E.M., Risnes S., Fischer P.M., Trace element analysis of blackish staining on the crowns of human archaeological teeth, Eur. J. Oral Sci., 1996, 104(3), 253–261. CrossrefGoogle Scholar

  • [34] Chen Q.G., Lin B., Chen Z.B., Zhu H.H., Chen H., Pilot study on early detection of dental demineralization based on laser induced fluorescence, Laser Phys. Lett., 2010, 7, 752–756. CrossrefGoogle Scholar

  • [35] Galiová M., Kaiser J., Fortes F.J., Novotný K., Malina R., Prokeš L., et al., Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry, Appl. Opt., 2010, 49(13), C191–C199. CrossrefGoogle Scholar

  • [36] Dutra-Corrêa M., Nicolodelli G., Rodrigues J.R., Kurachi C., Bagnato V.S., Femtosecond laser ablation on dental hard tissues- Analysis of ablated profile near an interface using local effective intensity, Laser Phys. Lett., 2011, 21(5), 965–971. CrossrefGoogle Scholar

  • [37] Nicolodelli G., Lizarelli R.F.Z., Bagnato V.S., Influence of effective number of pulses on the morphological structure of teeth and bovine femur after femtosecond laser ablation, J. Biomed. Opt., 2012, 17(4), 049804. CrossrefGoogle Scholar

  • [38] Gazmeh M., Maryam B., Tavassoli S.H., Discrimination of healthy and carious teeth using laser-induced breakdown spectroscopy and partial least square discriminant analysis, Appl. Opt., 2015, 54(1), 123–131. CrossrefGoogle Scholar

  • [39] Fortes F.J., Perez-Carceles M.D.,Sibon A., et al., Spatial distribution analysis of strontiumin human teeth by laser-induced breakdown spectroscopy: application to diagnosis of seawater drowning, Inter. J. Legal Med., 2015, 129(4), 807–814. CrossrefGoogle Scholar

  • [40] Rehse S.J., Salimnia H., Miziolek A.W., Laser-induced breakdown spectroscopy (LIBS): an overview of recent progress and future potential for biomedical applications, J. Med. Eng. Technol., 2012, 36(2), 77–89. CrossrefGoogle Scholar

  • [41] Scholes R.J., Noble I.R., Climate change. Storing carbon on land, Science, 2001, 294 (5544), 1012–1013. CrossrefGoogle Scholar

  • [42] Hahn D.W., Omenetto N., Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasmaparticle interactions: still-challenging issues within the analytical plasma community, Appl. Spectrosc., 2010, 64(12), 335–366. CrossrefGoogle Scholar

  • [43] Samek O., Lambert J., Hergenroder R., Liska M., Kaiser J., Novotny K., et al., Femtosecond laser spectrochemical analysis of plant samples, Laser Phys. Lett., 2006 Jan, 3(1), 21–25. CrossrefGoogle Scholar

  • [44] Samek O., Telle H.H., Beddows D.C.S., Laser-induced breakdown spectroscopy: a tool for real-time, in vitro and in vivo identification of carious teeth, BMC Oral Health, 2001, 1, 1–9. Google Scholar

  • [45] Samek O., Beddows D.C.S., Telle H.H., Morris G.W., Liska M., Kaiser J., Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy, Appl. Phys. A Mater. Sci. Proc., 1999, 69, S179–S182. CrossrefGoogle Scholar

  • [46] Samek O., Liska M., Kaiser J., Beddows D.C.S., Telle H.H., Kukhlevsky S.V., Clinical Application of Laser-Induced BreakdownSpectroscopy to the Analysis of Teeth and DentalMaterials, J. Clin. Laser Med. Surg., 2000, 18(6), 281–289. Google Scholar

  • [47] Alvira F.C., Rozzi F.V.R., Torchia G.A., Roso L., Bilmes G.M., A new method for relative Sr determination in human teeth enamel, J. Anthropol. Sci., 2011, 89, 153–160. Google Scholar

  • [48] Kihn P.W., Vital tooth whitening, Dent. Clin. North. Am., 2007, 51(2), 319–331. CrossrefGoogle Scholar

  • [49] Urabe I., Nakajima S., Sano H., Tagami J., Physical properties of the dentin-enamel junction region, Am. J. Dent., 2000, 13(3), 129–135. Google Scholar

  • [50] Kanemura N., Sano H., Tagami J., Tensile bond strength to and SEM evaluation of ground and intact enamel surfaces, J. Dent., 1999, 27(7), 523–530. CrossrefGoogle Scholar

  • [51] Deng M.,WenH.L., Dong X.L., Feng L., Xu X., Li H., et al., Effects of 45S5 bioglass on surface properties of dental enamel subjected to 35% hydrogen peroxide, Int. J. Oral Sci., 2013, 5(2), 103–110. CrossrefGoogle Scholar

  • [52] Zanet C.G., Fava M., Alves L.A.C., In vitro evaluation of the microhardness of bovine enamel exposed to acid solutions after bleaching, Braz. Oral Res., 2011, 25(6), 562–567. CrossrefGoogle Scholar

  • [53] Cremers D.A., Radziemski L.J., Handbook of Laser-Induced Breakdown Spectroscopy, JohnWiley & Sons, Wes Sussex, 2006, 2–6. Google Scholar

  • [54] Chew L.T., Bradley D.A., Mohd A.Y., Jamil M.M., Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES), Appl. Radiat. Isot., 2000, 53(4–5), 633–638. Google Scholar

  • [55] Sun Q., Tran M., Smith B.W., Winefordner J.D., Zinc analysis in human skin by laser induced-breakdown spectroscopy, Talanta, 2000, 52(2), 293–300. CrossrefGoogle Scholar

  • [56] Hosseinimakarem Z., Tavassoli S.H., Analysis of human nails by laser-induced breakdown spectroscopy, J. Biomed. Op., 2011, 16(5), 057002. Google Scholar

  • [57] Singh V.K., Kumar V., Sharma J., Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials, Lasers Med Sci., 2015, 30(6), 1763– 1778. CrossrefGoogle Scholar

  • [58] Unnikrishnan V.K., Choudhari K.S, Kulkarni S.D., Nayak R., Kartha V.B., Santhosh C., Suri B.M., Biomedical and environmental applications of laser-induced breakdown spectroscopy, Pramana J. Phys., 2014, 82(2), 397–401. CrossrefGoogle Scholar

  • [59] Gjorgievska E., Nicholson J.W., Prevention of enamel demineralization after tooth bleaching by bioactive glass incorporated into toothpaste, Aust. Dent. J., 2011, 56(2), 193–200. CrossrefGoogle Scholar

  • [60] Burwell A.K., Litkowski L.J., Greenspan D.C., Calcium sodium phosphosilicate (NovaMin): remineralization potential, Adv. Dent. Res., 2009, 21(1), 35–39. CrossrefGoogle Scholar

  • [61] Hench L.L., Andersson O.H., An Introduction to Bioceramics, In Advanced Series in Ceramics, Hench L.L., Wilson J., World Scientific Publishing Publishing Co. Pte. Ltd., 1993, 1, 41–46. Google Scholar

  • [62] Madan N., Sharma V., Pardal D., Madan N., Tooth remineralization using bio-active glass - A novel approach, J. Acad. Adv. Dent. Res., 2011, 2, 45–49. Google Scholar

About the article

Received: 2015-11-05

Accepted: 2016-02-05

Published Online: 2016-02-29


Citation Information: Biomedical glasses, Volume 2, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2016-0001.

Export Citation

© 2016 A. N. S. Rastelli et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Karen Pintado-Palomino, Cecilia Vilela Vasconcelos Barros de Almeida, Raphael Jurca Gonçalves da Motta, João Henrique Parise Fortes, and Camila Tirapelli
Clinical Oral Investigations, 2018

Comments (0)

Please log in or register to comment.
Log in