Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Sodium-free mixed alkali bioactive glasses

Delia S. Brauer
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raika Brückner
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maxi Tylkowski
  • Corresponding author
  • Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leena Hupa
  • Corresponding author
  • Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Piispankatu 8, FI-20500 Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/bglass-2016-0012

Abstract

Two sodium-free mixed alkali series of bioactive glasses based on compositions Bioglass 45S5 and ICIE1, containing lithium and/or potassium as alkali ions, were prepared by a melt-quench route. Thermal properties showed the well-known mixed alkali effect, with glass transition and crystallisation temperatures and the coefficient of thermal expansion going either through a minimum or a maximum for the mixed alkali composition, resulting in a wider processing window. Ion release, by contrast, was controlled by the modifier ionic radius, with ion release rates in dynamic and static dissolution studies increasing for potassium-substituted glasses compared to the composition containing lithium as the only alkali ion. This was caused by pronounced changes in oxygen packing density and molar volume of the glasses owing to the differences in ionic radii (76 pm for Li+ and 138 pm for K+). Partially substituting one alkali for another therefore helps to improve high temperature processing of bioactive glasses and can also be used to control or tailor ion release.

Keywords: ion release; MAE; lithium; potassium; bioactive glass

References

  • [1] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater, 2013, 9, 4457-4486. CrossrefWeb of ScienceGoogle Scholar

  • [2] Wallace K.E., Hill R.G., Pembroke J.T., Brown C.J., Hatton P.V., Influence of sodium oxide content on bioactive glass properties, J Mater Sci-Mater M, 1999, 10, 697-701. CrossrefGoogle Scholar

  • [3] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 2011, 32, 2757-2774. CrossrefWeb of ScienceGoogle Scholar

  • [4] Ducheyne P., Effect of bioactive glass particle size on osseous regeneration, J Biomed Mater Res, 1999, 46, 301-303. CrossrefGoogle Scholar

  • [5] Lindfors N.C., Koski I., Heikkila J.T., Mattila K., Aho A.J., A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors, J Biomed Mater Res B, 2010, 94B, 157-164. Web of ScienceGoogle Scholar

  • [6] Groh D., Döhler F., Brauer D.S., Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation, Acta Biomater, 2014, 10, 4465–4473. Web of ScienceCrossrefGoogle Scholar

  • [7] Döhler F., Groh D., Chiba S., Bierlich J., Kobelke J., Brauer D.S., Bioactive glasses with improved processing. Part 2. Viscosity and fibre drawing, J Non-Cryst Solids, 2016, 432, 130-136. Google Scholar

  • [8] Brink M., The influence of alkali and alkaline earths on the working range for bioactive glasses, J Biomed Mater Res, 1997, 36, 109-117. Google Scholar

  • [9] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Bioactivity of sodium free fluoride containing glasses and glass-ceramics, Materials, 2014, 7, 5470-5487. Web of ScienceCrossrefGoogle Scholar

  • [10] Chen X., Chen X., Brauer D.S.,Wilson R.M., Hill R.G., Karpukhina N., Novel alkali free bioactive fluorapatite glass ceramics, J Non- Cryst Solids, 2014, 402, 172-177. Google Scholar

  • [11] Kapoor S., Goel A., Tilocca A., Dhuna V., Bhatia G., Dhuna K. et al., Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses, Acta Biomater, 2014, 10, 3264-3278. CrossrefWeb of ScienceGoogle Scholar

  • [12] Tylkowski M., Brauer D.S., Mixed alkali effects in Bioglassr 45S5, J Non-Cryst Solids, 2013, 376, 175-181. Google Scholar

  • [13] Ray N.H., Composition-property relationships in inorganic oxide glasses, J Non-Cryst Solids, 1974, 15, 423-434. CrossrefGoogle Scholar

  • [14] Shannon R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst, 1976, A32, 751-767. CrossrefGoogle Scholar

  • [15] Brückner R., Tylkowski M., Hupa L., Brauer D.S., Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume, Journal ofMaterials Chemistry B, 2016, 4, 3121-3134. Google Scholar

  • [16] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R.G., Structural analysis of bioactive glasses, J Non-Cryst Solids, 2005, 351, 173-183. Google Scholar

  • [17] Fredholm Y.C., Karpukhina N., Law R.V., Hill R.G., Strontiumcontaining bioactive glasses: Glass structure and physical properties, J Non-Cryst Solids, 2010, 356, 2546-2551. Google Scholar

  • [18] Bingel L., Groh D., Karpukhina N., Brauer D.S., Influence of dissolution medium pH on ion release and apatite formation of Bioglassr 45S5, Mater Lett, 2015, 143, 279-282. Google Scholar

  • [19] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3- diol (Tris) buffer, Acta Biomater, 2013, 9, 5400-5410. Web of ScienceGoogle Scholar

  • [20] Fagerlund S., Ek P., Hupa L., Hupa M., Dissolution kinetics of a bioactive glass by continuous measurement, J Am Ceram Soc, 2012, 95, 3130-3137. Web of ScienceCrossrefGoogle Scholar

  • [21] Serra J., González P., Liste S., Chiussi S., León B., Pérez-Amor M. et al., Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses, J Mater Sci-Mater M, 2002, 13, 1221-1225. CrossrefGoogle Scholar

  • [22] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J Biomed Mater Res, 2001, 58, 720-726. Google Scholar

  • [23] LeGeros R.Z., Trautz O.R., Klein E., LeGeros J.P., Two types of carbonate substitution in the apatite structure, Experientia, 1969, 25, 5-7. CrossrefGoogle Scholar

  • [24] O’Donnell M.D.,Watts S.J., Hill R.G., LawR.V., The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses, J Mater Sci-Mater M, 2009, 20, 1611-1618. Web of ScienceCrossrefGoogle Scholar

  • [25] Brauer D.S., Bioactive glasses—structure and properties, Angew Chem Int Edit, 2015, 54, 4160-4181. CrossrefGoogle Scholar

  • [26] VogelW., Glass chemistry, 2nd ed. Springer, Berlin, Heidelberg, New York, London, 1994 1994. Google Scholar

  • [27] Day D.E., Mixed alkali glasses - their properties and uses, J Non- Cryst Solids, 1976, 21, 343-372. CrossrefGoogle Scholar

  • [28] Kamitsos E.I., Varsamis C.P.E., Vegiri A. Spectroscopic studies of mobile cations in glass. International Congress of Glass; Edinburgh, Scotland. Shefleld, UK: Society of Glass Technology; 2001. p. 234-246. Google Scholar

  • [29] Brow R.K., Review: the structure of simple phosphate glasses, J Non-Cryst Solids, 2000, 263, 1-28. Google Scholar

  • [30] Ahmed I., Collins C.A., Lewis M.P., Olsen I., Knowles J.C., Processing, characterisation and biocompatibility of ironphosphate glass fibres for tissue engineering, Biomaterials, 2004, 25, 3223-3232. CrossrefGoogle Scholar

  • [31] Natrup F.V., Bracht H., Correlation between the cation radii and the glass transition in mixed cation silicate glasses, Phys Chem Glasses, 2005, 46, 95-98. Google Scholar

  • [32] Dilmore M.F., Clark D.E., Hench L.L., Chemical durability of Na2O-K2O-CaO-SiO2 glasses, J Am Ceram Soc, 1978, 61, 439- 443. Google Scholar

  • [33] Scholze H., Glass: Nature, structure, and properties. Springer, New York, 1991. Google Scholar

  • [34] Maçon A.L.B., Kim T.B., Valliant E.M., Goetschius K., Brow R.K., Day D.E. et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, Journal ofMaterials Science-Materials in Medicine, 2015, 26. Google Scholar

  • [35] Shah F.A., Brauer D.S., Wilson R.M., Hill R.G., Hing K.A., Influence of cell culture medium composition on in vitro dissolution behavior of a fluoride-containing bioactive glass, J Biomed Mater Res A, 2014, 102, 647-654. Web of ScienceGoogle Scholar

About the article

Received: 2016-08-31

Accepted: 2016-11-21

Published Online: 2016-12-14


Citation Information: Biomedical glasses, Volume 2, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2016-0012.

Export Citation

© 2016 D. S. Brauer et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. Wetzel, O. Bartzok, L. Hupa, and D.S. Brauer
Materials Letters, 2019, Volume 256, Page 126599
[2]
Ayush Mishra, Miina Ojansivu, Reija Autio, Sari Vanhatupa, Susanna Miettinen, and Jonathan Massera
Journal of Biomedical Materials Research Part A, 2019, Volume 107, Number 9, Page 2099
[3]
Mohamed Atef Cherbib, Ismail Khattech, Lionel Montagne, Bertrand Revel, and Mohamed Jemal
Journal of Non-Crystalline Solids, 2018, Volume 485, Page 1
[4]
Gloria Kirste, Juliane Brandt-Slowik, Christian Bocker, Michael Steinert, Reinhard Geiss, and Delia S. Brauer
International Journal of Applied Glass Science, 2017
[5]
Luis Haro Durand, Gabriela Vargas, Rosa Vera-Mesones, Alberto Baldi, María Zago, María Fanovich, Aldo Boccaccini, and Alejandro Gorustovich
Materials, 2017, Volume 10, Number 7, Page 740

Comments (0)

Please log in or register to comment.
Log in