Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Evaluation of in vivo angiogenetic effects of copper doped bioactive glass scaffolds in the AV loop model

Gregor Bührer
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ulrike Rottensteiner
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexander Hoppe
  • Corresponding author
  • Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Detsch
  • Corresponding author
  • Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Diana Dafinova
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tobias Fey
  • Corresponding author
  • Department of Materials Science and Engineering Institute of Glass and Ceramics, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter Greil
  • Corresponding author
  • Department of Materials Science and Engineering Institute of Glass and Ceramics, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Weis
  • Corresponding author
  • Center for Medical Physics and Technology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Justus P. Beier
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aldo R. Boccacini
  • Corresponding author
  • Institute for Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raymund E. Horch
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andreas Arkudas
  • Corresponding author
  • Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/bglass-2016-0013

Abstract

effects of 3D scaffolds made from 45S5 bioactive glass (BG) doped with 1 wt. % copper ions in the arteriovenous loop model of the rat.

Materials and Methods: An arteriovenous loop was built in the groin of 10 rats and inserted in 1% copper doped 45S5 BG scaffolds and fibrin. The scaffold and the AV loop were inserted in Teflon isolation chambers and explanted 3 weeks after implantation. Afterwards the scaffolds were analyzed by Micro-CT and histology regarding vascularization. Results were compared to plain 45S5 BG-based scaffolds from a previous study.

Results: Micro-CT and histological evaluation showed consistent vascularization of the constructs. A tendency towards an increased vascularization in the copper doped BG group compared to plain BG constructs could be observed. However, therewas no significant difference in statistical analysis between both groups.

Conclusions: This study shows results that support an increased angiogenetic effect of 1% copper doped 45S5 BG compared to regular 45S5 BG scaffolds in the rat arteriovenous loop model although these tendencies are not backed by statistical evidence. Maybe higher copper doses could lead to a statistically significant angiogenetic effect.

Keywords: angiogenesis; copper ions; in vivo

References

  • [1] Buehrer, G., Balzer, A., Arnold, I., Beier, J.P., Koerner, C., Bleiziffer, O., et al., Combination of BMP2 and MSCs significantly increases bone formation in the rat arterio-venous loop model. Tissue Eng Part A, 2015. 21(1–2): 96–105. CrossrefGoogle Scholar

  • [2] Sasaki, J., Hashimoto, M., Yamaguchi, S., Itoh, Y., Yoshimoto, I., Matsumoto, T., et al., Fabrication of Biomimetic Bone Tissue Using Mesenchymal Stem Cell–Derived Three–Dimensional Constructs Incorporating Endothelial Cells. PLoS One, 2015. 10(6): e0129266. Web of ScienceGoogle Scholar

  • [3] Quinlan, E., Lopez-Noriega, A., Thompson, E.M., Hibbitts, A., Cryan, S.A., and O’Brien, F.J., Controlled release of vascular endothelial growth factor from spray-dried alginate microparticles in collagen-hydroxyapatite scaffolds for promoting vascularization and bone repair. J Tissue Eng Regen Med, 2015. Google Scholar

  • [4] Gerhardt, L.-C. and Boccaccini, A.R., Bioactive Glass and Glass- Ceramic Scaffolds for Bone Tissue Engineering.Materials, 2010. 3(7): 3867. CrossrefGoogle Scholar

  • [5] Gorustovich, A.A., Roether, J.A., and Boccaccini, A.R., Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev, 2010. 16(2): 199–207. CrossrefGoogle Scholar

  • [6] Hoppe, A., Guldal, N.S., and Boccaccini, A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011. 32(11): 2757– 2774. CrossrefWeb of ScienceGoogle Scholar

  • [7] Habibovic, P. and Barralet, J.E., Bioinorganics and biomaterials: bone repair. Acta Biomater, 2011. 7(8): 3013–3026. CrossrefGoogle Scholar

  • [8] Hoppe, A., Brandl, A., Bleiziffer, O., Arkudas, A., Horch, R.E., Jokic, B., et al., In vitro cell response to Co-containing 1,393 bioactive glass. Mater Sci Eng C Mater Biol Appl, 2015. 57: 157–163. Google Scholar

  • [9] Barralet, J., Gbureck, U., Habibovic, P., Vorndran, E., Gerard, C., and Doillon, C.J., Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A, 2009. 15(7): 1601–1609. CrossrefGoogle Scholar

  • [10] Giavaresi, G., Torricelli, P., Fornasari, P.M., Giardino, R., Barbucci, R., and Leone, G., Blood vessel formation after soft-tissue implantation of hyaluronan-based hydrogel supplemented with copper ions. Biomaterials, 2005. 26(16): 3001–3008. CrossrefGoogle Scholar

  • [11] Hu, G.F., Copper stimulates proliferation of human endothelial cells under culture. J Cell Biochem, 1998. 69(3): 326–335. CrossrefGoogle Scholar

  • [12] Feng,W., Ye, F., Xue,W., Zhou, Z., and Kang, Y.J., Copper regulation of hypoxia-inducible factor-1 activity. Mol Pharmacol, 2009. 75(1): 174–182. CrossrefGoogle Scholar

  • [13] Gerard, C., Bordeleau, L.J., Barralet, J., and Doillon, C.J., The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 2010. 31(5): 824–831. Web of ScienceCrossrefGoogle Scholar

  • [14] Zhang, Z., Qiu, L., Lin, C., Yang, H., Fu, H., Li, R., et al., Copperdependent and -independent hypoxia-inducible factor-1 regulation of gene expression. Metallomics, 2014. 6(10): 1889–1893. CrossrefGoogle Scholar

  • [15] Rath, S.N., Brandl, A., Hiller, D., Hoppe, A., Gbureck, U., Horch, R.E., et al., Bioactive copper–doped glass scaffolds can stimulate endothelial cells in co–culture in combination with mesenchymal stem cells. PLoS One, 2014. 9(12): e113319. Web of ScienceCrossrefGoogle Scholar

  • [16] Sen, C.K., Khanna, S., Venojarvi, M., Trikha, P., Ellison, E.C., Hunt, T.K., et al., Copper-induced vascular endothelial growth factor expression and wound healing. Am J Physiol Heart Circ Physiol, 2002. 282(5): H1821–1827. CrossrefGoogle Scholar

  • [17] Li, S., Xie, H., and Kang, Y.J., Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Exp Biol Med (Maywood), 2012. 237(1): 77–82. CrossrefGoogle Scholar

  • [18] Ewald, A., Kappel, C., Vorndran, E., Moseke, C., Gelinsky, M., and Gbureck, U., The effect of Cu(II)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J Biomed Mater Res A, 2012. 100(9): 2392–2400. Web of ScienceGoogle Scholar

  • [19] Hench, L.L., The story of Bioglass. J Mater SciMater Med, 2006. 17(11): 967–978. CrossrefGoogle Scholar

  • [20] Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., et al., Copper–containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013. 34(2): 422–433. CrossrefWeb of ScienceGoogle Scholar

  • [21] Erol, O.O. and Spira, M., New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum, 1979. 30: 530–531. Google Scholar

  • [22] Kneser, U., Polykandriotis, E., Ohnolz, J., Heidner, K., Grabinger, L., Euler, S., et al., Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng, 2006. 12(7): 1721–1731. CrossrefGoogle Scholar

  • [23] Arkudas, A., Pryymachuk, G., Beier, J.P., Weigel, L., Korner, C., Singer, R.F., et al., Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast Reconstr Surg, 2012. 129(1): 55e–65e. CrossrefWeb of ScienceGoogle Scholar

  • [24] Arkudas, A., Balzer, A., Buehrer, G., Arnold, I., Hoppe, A., Detsch, R., et al., Evaluation of angiogenesis of bioactive glass in the arteriovenous loop model. Tissue Eng Part C Methods, 2013. 19(6): 479–486. CrossrefGoogle Scholar

  • [25] Hoppe, A., Meszaros, R., Stahli, C., Romeis, S., Schmidt, J., Peukert, W., et al., In vitro reactivity of Cu doped 45S5 BioglassGoogle Scholar

  • [ registered sign] derived scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2013. 1(41): 5659– 5674. Google Scholar

  • [26] Arkudas, A., Pryymachuk, G., Hoereth, T., Beier, J.P., Polykandriotis, E., Bleiziffer, O., et al., Dose-finding study of fibrin gelimmobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A, 2009. 15(9): 2501–2511. Google Scholar

  • [27] Kalal, Z.,Matas, J.&Mikolajczyk, K, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 49—-56 (IEEE, 2010), 2010. Google Scholar

  • [28] Seber, G., SLAC Research Library | Community Pages. 1984. Google Scholar

  • [29] Laschke, M.W., Harder, Y., Amon, M.,Martin, I., Farhadi, J., Ring, A., et al., Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng, 2006. 12(8): 2093– 2104. CrossrefGoogle Scholar

  • [30] Horch, R.E., Beier, J.P., Kneser, U., and Arkudas, A., Successful human long–term application of in situ bone tissue engineering. J Cell Mol Med, 2014. 18(7): 1478–1485. CrossrefGoogle Scholar

  • [31] Schmidt, V.J., Hilgert, J.G., Covi, J.M., Leibig, N.,Wietbrock, J.O., Arkudas, A., et al., Flow increase is decisive to initiate angiogenesis in veins exposed to altered hemodynamics. PLoS One, 2015. 10(1): e0117407. Web of ScienceGoogle Scholar

  • [32] Weigand, A., Beier, J.P., Hess, A., Gerber, T., Arkudas, A., Horch, R.E., et al., Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization. Tissue Eng Part A, 2015. 21(9–10): 1680– 1694. CrossrefGoogle Scholar

  • [33] Gerhardt, L.C., Widdows, K.L., Erol, M.M., Burch, C.W., Sanz– Herrera, J.A., Ochoa, I., et al., The pro-angiogenic properties of multi–functional bioactive glass composite scaffolds. Biomaterials, 2011. 32(17): 4096–4108. CrossrefGoogle Scholar

  • [34] Leu, A., Stieger, S.M., Dayton, P., Ferrara, K.W., and Leach, J.K., Angiogenic response to bioactive glass promotes bone healing in an irradiated calvarial defect. Tissue Eng Part A, 2009. 15(4): 877–885. CrossrefGoogle Scholar

  • [35] Yuan, Q., Bleiziffer, O., Boos, A.M., Sun, J.M., Brandl, A., Beier, J.P., et al., PHDs inhibitor DMOG promotes the vascularization process in the AV loop by HIF-1a up-regulation and the preliminary discussion on its kinetics in rat. Bmc Biotechnology, 2014. 14. Web of ScienceGoogle Scholar

  • [36] Handel, M., Hammer, T.R., Nooeaid, P., Boccaccini, A.R., and Hoefer, D., 45S5-Bioglass((R))-based 3D-scaffolds seeded with human adipose tissue–derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng Part A, 2013. 19(23–24): 2703–2712. Google Scholar

  • [37] Zhong, Z., Gu, H., Peng, J., Wang, W., Johnstone, B.H., March, K.L., et al., GDNF secreted from adipose–derived stem cells stimulates VEGF–independent angiogenesis. Oncotarget, 2016. 7(24): 36829–36841. Web of ScienceGoogle Scholar

  • [38] Yu, H.S., Pastor, S.A., Lam, K.W., and Yee, R.W., Ascorbateenhanced copper toxicity on bovine corneal endothelial cells in vitro. Curr Eye Res, 1990. 9(2): 177–182. CrossrefGoogle Scholar

  • [39] Frangoulis, M., Georgiou, P., Chrisostomidis, C., Perrea, D., Dontas, I., Kavantzas, N., et al., Rat epigastric flap survival and VEGF expression after local copper application. Plast Reconstr Surg, 2007. 119(3): 837–843. CrossrefWeb of ScienceGoogle Scholar

  • [40] Stahli, C., Muja, N., and Nazhat, S.N., Controlled copper ion release from phosphate–based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment. Tissue Eng Part A, 2013. 19(3–4): 548–557. CrossrefGoogle Scholar

  • [41] Stahli, C., James–Bhasin, M., Hoppe, A., Boccaccini, A.R., and Nazhat, S.N., Effect of ion release from Cu-doped 45S5 Bioglass( R) on 3D endothelial cell morphogenesis. Acta Biomater, 2015. 19: 15–22. CrossrefGoogle Scholar

  • [42] Day, R.M., Boccaccini, A.R., Shurey, S., Roether, J.A., Forbes, A., Hench, L.L., et al., Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials, 2004. 25(27): 5857–5866. CrossrefGoogle Scholar

  • [43] Arkudas, A., Beier, J.P., Pryymachuk, G., Hoereth, T., Bleiziffer, O., Polykandriotis, E., et al., Automatic quantitative micro– computed tomography evaluation of angiogenesis in an axially vascularized tissue–engineered bone construct. Tissue Eng Part C Methods, 2010. 16(6): 1503–1514. CrossrefGoogle Scholar

  • [44] Rottensteiner, U., Sarker, B., Heusinger, D., Dafinova, D., Rath, S., Beier, J., et al., In vitro and in vivo Biocompatibility of Alginate Dialdehyde/Gelatin Hydrogels with and without Nanoscaled Bioactive Glass for Bone Tissue Engineering Applications. Materials, 2014. 7(3): 1957. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-08-01

Accepted: 2016-11-01

Published Online: 2016-12-14


Citation Information: Biomedical glasses, Volume 2, Issue 1, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2016-0013.

Export Citation

© 2016 G. Bührer et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaoju Wang, Binbin Zhang Molino, Sanna Pitkänen, Miina Ojansivu, Chunlin Xu, Markus Hannula, Jari Hyttinen, Susanna Miettinen, Leena Hupa, and Gordon Wallace
ACS Biomaterials Science & Engineering, 2019, Volume 5, Number 9, Page 4496
[2]
Francesco Baino, Enrica Verné, Elisa Fiume, Oscar Peitl, Edgar D. Zanotto, Simone M. Brandão, and Silvana A. Schellini
International Journal of Applied Ceramic Technology, 2019, Volume 16, Number 5, Page 1850
[3]
Francesco Baino, Sepideh Hamzehlou, and Saeid Kargozar
Journal of Functional Biomaterials, 2018, Volume 9, Number 1, Page 25
[4]
Saeid Kargozar, Francesco Baino, Sepideh Hamzehlou, Robert G. Hill, and Masoud Mozafari
Trends in Biotechnology, 2018, Volume 36, Number 4, Page 430

Comments (0)

Please log in or register to comment.
Log in