Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Glass-based coatings on biomedical implants: a state-of-the-art review

Francesco Baino
  • Corresponding author
  • Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrica Verné
  • Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-21 | DOI: https://doi.org/10.1515/bglass-2017-0001


Bioactive glasses, invented by Prof. Larry L. Hench in the late 1960s, have revolutionized the field of biomaterials as they were shown to tightly bond to both hard and soft living tissues and to stimulate cells towards a path of regeneration and self-repair. However, due to their relatively poor mechanical properties (brittleness, low bending strength and fracture toughness), they are generally unsuitable for load-bearing applications. On the other hand, bioactive glasses have been successfully applied as coatings on the surface of stronger/tougher substrates to combine adequate mechanical properties with high bioactivity and, in some cases, additional extrafunctionalities (e.g. antibacterial properties, drug release). After giving a short overview of the main issues concerning the fabrication of glass coatings, this review provides a state-of-the-art picture in the field and specifically discusses the development of bioactive and hierarchical coatings on 3D porous scaffolds, joint prostheses, metallic substrates (e.g. wires or nails) for orthopedic fixation, polymeric meshes and sutures for wound healing, ocular implants and percutaneous devices.

Keywords: Bioactive glass; Coating; Tissue engineering


  • [1] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., Tomsia A.P., Bioactive Glass in Tissue Engineering, Acta Biomater 2011, 7, 2355-2373.Google Scholar

  • [2] Hoppe A., Guldal N., Boccaccini A.R., Biological Response to Ionic Dissolution Products from Bioactive Glass and Glass- Ceramics in the Context of Bone Tissue Engineering, Biomaterials 2011, 32, 2757-2774.Google Scholar

  • [3] Mahmood Rabiee S., Nazparvar N., Azizian M., Vashaee D., Tayebi L., Effect of Ion Substitution on Properties of Bioactive Glasses: a Review, Ceram Int 2015, 41, 7241-7251.Google Scholar

  • [4] Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K., Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, J Biomed Mater Res 1971, 5, 117-141.CrossrefGoogle Scholar

  • [5] Hench L.L., The Story of Bioglassr, JMater SciMater Med 2006, 17, 967-978.Google Scholar

  • [6] Jones J.R., Review of Bioactive Glass: from Hench to Hybrids, Acta Biomater 2013, 9, 4457-4486.CrossrefGoogle Scholar

  • [7] Kaur G., Pandey O.P., Singh K., Homa D., Scott B., Pickrell G., A Review of Bioactive Glasses: their Structure, Properties, Fabrication, and Apatite Formation, J Biomed Mater Res A 2014, 102, 254-274.CrossrefGoogle Scholar

  • [8] Baino F., Novajra G., Miguez-Pacheco V., Boccaccini A.R., Vitale- Brovarone C., Bioactive Glasses: Special Applications outside the Skeletal System, J Non-Cryst Solids 2016, 432, 15-30.Google Scholar

  • [9] Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R., Biodegradable and Bioactive Porous Polymer/Inorganic Composite Scaffolds for Bone Tissue Engineering, Biomaterials 2006, 27, 3413-3431.Google Scholar

  • [10] Sola A., Bellucci D., Cannillo V., Cattini A., Bioactive Glass Coatings: a Review, Surf Eng 2011, 27, 560-572.Google Scholar

  • [11] McEntire B.J., Bal B.S., Rahaman M.N., Chevalier J., Pezzotti G., Ceramics and Ceramic Coatings in Orthopaedics, J Eur Ceram Soc 2015, 35, 4327-4369.Google Scholar

  • [12] Verné E., Bioactive glass and glass-ceramic coatings, In: Jones J.R., Clare A.G. (Eds.), Bio-glasses: an introduction, Wiley, Chichester (UK), 2012.Google Scholar

  • [13] Sun L., Berndt C.C., Gross K.A., Kucuk A., Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review, J Biomed Mater Res (Appl Biomater) 2001, 58, 570-592.Google Scholar

  • [14] Gomez-Vega J.M., Saiz E., Tomsia A.P., Oku T., Suganuma K., Marshall G.W., Marshall S.J., Novel Bioactive Functionally Graded Coatings on Ti6Al4V, Adv Mater 2000, 12, 894-898.CrossrefGoogle Scholar

  • [15] Lopez-Esteban S., Saiz E., Fujino S., Oku T., Suganuma K., Tomsia A.P., Bioactive Glass Coatings for Orthopedic Metallic Implants, J Eur Ceram Soc 2003, 23, 2921-2930.CrossrefGoogle Scholar

  • [16] Lopez-Esteban S., Gutierrez-Gonzalez C.F., Gremillard L., Saiz E., Tomsia A.P., Interfaces in Graded Coatings on Titanium- Based Implants, J Biomed Mater Res A 2009, 88, 1010-1021.Google Scholar

  • [17] Baino F., Marshall M., Kirk N., Vitale-Brovarone C., Design, Selection and Characterization of Novel Glasses and Glass- Ceramics for use in Prosthetic Applications, Ceram Int 2016, 42, 1482-1491.CrossrefGoogle Scholar

  • [18] Roether J.A., Boccaccini A.R., Hench L.L., Maquet V., Gautier S., Jerome R., Development and In Vitro Characterisation of Novel Bioresorbable and Bioactive Composite Materials Based on Polylactide Foams and Bioglassr for Tissue Engineering Applications, Biomaterials 2002, 23, 3871-3878.CrossrefGoogle Scholar

  • [19] Boccaccini A.R., Keim S., Ma R., Li Y., Zhitomirsky I., Electrophoretic Deposition of Biomaterials, J R Soc Interface 2010, 7, S581-S613.CrossrefGoogle Scholar

  • [20] Bil M., Ryszkowska J., Roether J.A., Bretcanu O., Boccaccini A.R., Bioactivity of Polyurethane-Based Scaffolds Coated with Bioglassr, Biomed Mater 2007, 2, 93-101.Google Scholar

  • [21] Baino F., Verné E., Vitale-Brovarone C., Feasibility, Tailoring and Properties of Polyurethane/Bioactive Glass Composite Scaffolds for Tissue Engineering, J Mater Sci Mater Med 2009, 20, 2189-2195.CrossrefGoogle Scholar

  • [22] Cabanas-Polo S., Philippart A., Boccardi E., Hazur J., Boccaccini A.R., Facile Production of Porous Bioactive Glass Scaffolds by the Foam Replica Technique Combined with Sol- Gel/Electrophoretic Deposition, Ceram Int 2016, 42, 5772-5777.CrossrefGoogle Scholar

  • [23] Mohamad Yunos D., Bretcanu O., Boccaccini A.R. Polymer- Bioceramic Composites for Tissue Engineering Scaffolds, J Mater Sci 2008, 43, 4433-4442.Google Scholar

  • [24] Baino F., Vitale-Brovarone C., Three-Dimensional Glass-Derived Scaffolds for Bone Tissue Engineering: Current Trends and Forecasts for the Future, J Biomed Mater Res A 2011, 97, 514-535.CrossrefGoogle Scholar

  • [25] Miao X., Modification of Porous Alumina Ceramics with Bioinert and Bioactive Glass Coatings, AdvMater Res 2008, 32, 211-214.Google Scholar

  • [26] Liu J., Dong Z., Miao X., Porous Alumina/Zirconia Composite Scaffold with Bioactive Glass 58S33C Coating, J Biomimetics Biomater Tissue Eng, 2010, 6, 87-104.Google Scholar

  • [27] Ria L., Rodal P., Lopez-Alvarez M., Borrajo J.P., Solla E., Serra J., Gonzalez P., Leon B, Bioceramic Coatings on Biomorphic SiC by Electrophoretic Deposition,Mater Sci Forum2008, 587-588, 86-90.Google Scholar

  • [28] Jun I.K., Song J.H., Choi W.Y., Koh Y.H., Kim H.E., Porous Hydroxyapatite Scaffolds Coated with Bioactive Apatite-Wollastonite Glass-Ceramics, J Am Ceram Soc 2007, 90, 2703-2708.CrossrefGoogle Scholar

  • [29] Esfahani S.I.R., Tavangarian F., Emadi R., Nanostructured Bioactive Glass Coating on Porous Hydroxyapatite Scaffold for Strength Enhancement, Mater Lett 2008, 62, 3428-3430.CrossrefGoogle Scholar

  • [30] Esfahani S.I.R., Nouri-Khorasani S., Lu Z.F., Appleyard R.C., Zreiqat H, Effects of Bioactive Glass Nanoparticles on the Mechanical and Biological Behavior of Composite Coated Scaffolds. Acta Biomater 2011, 7, 1307-1318.CrossrefGoogle Scholar

  • [31] Yazdimamaghani M., Razavi M., Vashaee D., Raveendra Pothineni V., Rajadas J., Tayebi L., Significant Degradability Enhancement in Multilayer Coating of Polycaprolactone-Bioactive Glass/Gelatin-Bioactive Glass on Magnesium Scaffold for Tissue Engineering Applications, Appl Surf Sci 2015, 338, 137-145.Google Scholar

  • [32] Li N., Zheng Y., NovelMagnesiumAlloys Developed for Biomedical Application: a Review, JMater Sci Technol 2013, 29, 489-502.Google Scholar

  • [33] Mourino V., Boccaccini A.R., Bone Tissue Engineering Therapeutics: Controlled Drug Delivery in Three Dimensional Scaffolds, J R Soc Interface 2010, 7, 209-227.Google Scholar

  • [34] Arcos D., Vallet-Regí M., Bioceramics for Drug Delivery, Acta Mater 2013, 61, 890-911.Google Scholar

  • [35] Cauda V., Fiorilli S., Onida B., Verné E., Vitale-Brovarone C., Viterbo D., Croce G., Milanesio M., Garrone E., SBA-15 Ordered Mesoporous Silica inside a Bioactive Glass-Ceramic Scaffold for Local Drug Delivery, JMater SciMater Med 2008, 19, 3303-3310.Google Scholar

  • [36] Mortera R., Onida B., Fiorilli S., Cauda V., Vitale-Brovarone C., Baino F., Verné E., Garrone E., Synthesis of MCM-41 Spheres inside Bioactive Glass-Ceramic Scaffold, Chem Eng J 2008, 137, 54-61.Google Scholar

  • [37] Vitale-Brovarone C., Baino F., Miola M., Mortera R., Onida B., Verné E., Glass-Ceramic Scaffolds Containing Silica Mesophases for Bone Grafting and Drug Delivery, J Mater Sci Mater Med 2009, 20, 809-820.Google Scholar

  • [38] Mortera R., Baino F., Croce G., Fiorilli S., Vitale-Brovarone C., Verné E., Onida B., Monodisperse Mesoporous Silica Spheres inside a Bioactive Macroporous Glass-Ceramic Scaffold, Adv Eng Mater 2010, 12, B256-B259.CrossrefGoogle Scholar

  • [39] Boccardi E., Philippart A., Juhasz-Bortuzzo J., Beltran A., Novajra G., Vitale-Brovarone C., Spiecker E., Boccaccini A.R., Uniform Surface Modification of 3D Bioglassr-Based Scaffolds with Mesoporous Silica Particles (MCM-41) for Enhancing Drug Delivery Capability, Front Bioeng Biotechnol 2015, 3, 177.Google Scholar

  • [40] Horcajada P., Ramila A., Boulahya K., Gonzalez-Calbet J., Vallet- Regi M., Bioactivity in Ordered Mesoporous Materials, Solid State Sci 2004, 6, 1295-1300.CrossrefGoogle Scholar

  • [41] Izquierdo-Barba I., Ruiz-Gonzalez L., Doadrio J.C., Gonzalez- Calbet J.M., Vallet-Regi M, Tissue Regeneration: a New Property of Mesoporous Materials, Solid State Sci 2005, 7, 983-989.CrossrefGoogle Scholar

  • [42] Izquierdo-Barba I., Vallet-Regi M., Mesoporous Bioactive Glasses: Relevance of Their Porous Structure Compared to That of Classical Bioglasses, Biomed Glasses 2015, 1, 140-150.Google Scholar

  • [43] Fiorilli S., Baino F., Cauda V., Crepaldi M., Vitale-Brovarone C., Demarchi D., Onida B., Electrophoretic Deposition of Mesoporous Bioactive Glass on Glass-ceramic Foam Scaffolds for Bone Tissue Engineering, J Mater Sci Mater Med 2015, 26, 21.Google Scholar

  • [44] Zhang Y., Xia L., Zhai D., Shi M., Luo Y., Feng C., Fang B., Yin J., Chang J., Wu C., Mesoporous Bioactive Glass Nanolayer- Functionalized 3D-Printed Scaffolds for Accelerating Osteogenesis and Angiogenesis, Nanoscale 2015, 7, 19207-19221.Google Scholar

  • [45] Wu C., Zhang Y., Zhu Y., Friis T., Xiao Y., Structure-Property Relationships of Silk-Modified Mesoporous Bioglass Scaffolds, Biomaterials 2010, 31, 3429-3438.CrossrefGoogle Scholar

  • [46] Shi M., Zhai D., Zhao L.,Wu C., Chang J., Nanosized Mesoporous Bioactive Glass/Poly(lactic-co-glycolic Acid) Composite-Coated CaSiO3 Scaffolds with Multifunctional Properties for Bone Tissue Engineering, BioMed Res Int 2014, Article ID 323046Google Scholar

  • [47] Rahaman M.N., Yao A., Sonny Bal B., Garino J.P., Ries N.D., Ceramics for Prosthetic Hip and Knee Joint Replacement, J Am Ceram Soc, 2007, 90, 1965-1988.CrossrefGoogle Scholar

  • [48] Jaffe W.L., Scott D.F., Current Concepts Review - Total Hip Arthroplasty with Hydroxyapatite-Coated Prostheses, J Bone Joint Surg 1996, 78, 1918-1934.CrossrefGoogle Scholar

  • [49] Griss P., Greenspan D.C., Heimke G., Krempien B., Buchinger R., Hench L.L., Jentschura J., Evaluation of a Bioglass-Coated Al2O3 Total Hip Prosthesis in Sheep, J BiomedMater Res 1976, 10, 511-518.Google Scholar

  • [50] Hamadouche M., Meunier A., Greenspan D.C., Blanchat C.,Zhong J.P., LaTorre G.P., Sedel L., Bioactivity of Sol-Gel Bioactive Glass Coated Alumina Implants, J Biomed Mater Res 2000, 52, 422-429.CrossrefGoogle Scholar

  • [51] Verné E., Vitale-Brovarone C., Robiglio L., Baino F., Single-Piece Ceramic Prosthesis Elements, EU Patent no. EP2152328 (WO 2008/146322 A2), 2008.Google Scholar

  • [52] Vitale-Brovarone C., Baino F., Tallia F., Gervasio C., Verné E., Bioactive Glass-Derived Trabecular Coating: a Smart Solution for Enhancing Osteointegration of Prosthetic Elements, J Mater Sci Mater Med 2012, 23, 2369-2380.CrossrefGoogle Scholar

  • [53] Baino F., Vitale-Brovarone C., Feasibility of Glass-Ceramic Coatings on Alumina Prosthetic Implants by Airbrush Spraying Method, Ceram Int 2015, 41, 2150-2159.Google Scholar

  • [54] Baino F., Vitale-Brovarone C., Wollastonite-Containing Bioceramic Coatings on Alumina Substrates: Design Considerations and Mechanical Modelling, Ceram Int 2015, 41, 11464-11470.Google Scholar

  • [55] Baino F., Tallia F., Novajra G., Minguella J., Montealegre M.A., Korkusuz F., Vitale-Brovarone C., Novel Bone-Like Porous Glass Coatings on Al2O3 Prosthetic Substrates, Key Eng Mater 2015, 631, 236-240.Google Scholar

  • [56] Baino F., Vitale-Brovarone C., Trabecular Coating on Curved Alumina Substrates Using a Novel Bioactive and Strong Glass- Ceramic, Biomed Glasses 2015, 1, 31-40.Google Scholar

  • [57] Baino F., Minguella J., Kirk N., Montealegre M.A., Fiaschi C., Korkusuz F., Orlygsson G., Vitale-Brovarone C., Novel Full-Ceramic Monoblock Acetabular Cup with a Bioactive Trabecular Coating: Design, Fabrication and Characterization, Ceram Int 2016, 42, 6833-6845.CrossrefGoogle Scholar

  • [58] ASTM C633, Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, 2008.Google Scholar

  • [59] Alonso-Barrio J.A., Sanchez-Herraez S., Fernandez-Hernandez O., Betegon-Nicolas J., Gonzalez-Fernandez J.J., Lopez-Sastre A., Bioglass-Coated Femoral Stem, J Bone Joint Surg 2004, 86B (Suppl II), 138.Google Scholar

  • [60] Drnovšek N., Novak S., Dragin U., Čeh M., Gorenšek M., Gradišar M., Bioactive Glass Enhances Bone Ingrowth into the Porous Titanium Coating on Orthopaedic Implants, Int Orthop (SICOT) 2012, 36, 1739-1745. CrossrefGoogle Scholar

  • [61] Schrooten J., Helsen J.A., Adhesion of Bioactive Glass Coating to Ti6Al4V Oral Implant, Biomaterials, 2000, 21, 1461-1469.CrossrefGoogle Scholar

  • [62] Lopez Calvo V., Vicent Cabedo M., Bannier E., Canas Recacha E., Boccaccini A.R., Cordero Arias L., Sanchez Vilches E., 45S5 Bioactive Glass Coatings by Atmospheric Plasma Spraying Obtained from Feedstocks Prepared by Different Routes, J Mater Sci 2014, 49, 7933-7942.Google Scholar

  • [63] Pishbin F., Simchi A., Ryan M.P., Boccaccini A.R., Electrophoretic Deposition of Chitosan/45S5 Bioglassr Composite Coatings for Orthopaedic Applications, Surf Coatings Technol 2011, 205, 5260-5268.Google Scholar

  • [64] Miola M., Verné E., Ciraldo F.E., Cordero-Arias L., Boccaccini A.R., Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr, Front Bioeng Biotechnol 2015, 3, 159.Google Scholar

  • [65] Chen Q., Cordero-Arias L., Roether J.A., Cabanas-Polo S., Virtanen S., Boccaccini A.R., Alginate/Bioglassr Composite Coatings on Stainless Steel Deposited by Direct Current and Alternating Current Electrophoretic Deposition, Surf Coatings Technol 2013, 233, 49-56.Google Scholar

  • [66] Moskalewicz T., Seuss S., Boccaccini A.R., Microstructure and Properties of Composite Polyetheretherketone/Bioglassr Coatings deposited on Ti-6Al-7Nb Alloy for Medical Applications, Appl Surf Sci 2013, 273, 62-67.Google Scholar

  • [67] Seuss S., Lehmann M., Boccaccini A.R., Alternating Current Electrophoretic Deposition of Antibacterial Bioactive Glass- Chitosan Composite Coatings, Int J Mol Sci 2014, 15, 12231-12242.CrossrefGoogle Scholar

  • [68] Pishbin F. Mourino V., Gilchrista J.B., Kreppel S., McComb D.W., Salih V., Ryan M.P., Boccaccini A.R., Single-Step Electrochemical Deposition of Antimicrobial Orthopaedic Coatings Based on Bioactive Glass/Chitosan/Nano-Silver Composite System, Acta Biomater 2013, 9, 7469-7479.CrossrefGoogle Scholar

  • [69] Seuss S., Heinloth M., Boccaccini A.R., Development of Bioactive Composite Coatings Based on Combination of PEEK, Bioactive Glass and Ag Nanoparticles with Antimicrobial Properties, Surf Coatings Technol 2016, 301, 100-105.Google Scholar

  • [70] Stamboulis A.G., Boccaccini A.R., Hench L.L., Novel Biodegradable Polymer/Bioactive Glass Composites for Tissue Engineering Applications, Adv Eng Mater 2002, 4, 105-109.Google Scholar

  • [71] Stamboulis A., Hench L.L., Boccaccini A.R., Mechanical Properties of Biodegradable Polymer Sutures Coated with Bioactive Glass, J Mater Sci Mater Med 2002, 13, 843-848.Google Scholar

  • [72] Bretcanu O., Verné E., Borello L, Boccaccini A.R., Bioactivity of Degradable Polymer Sutures Coated with Bioactive Glass, J Mater Sci Mater Med 2004, 15, 893-899.CrossrefGoogle Scholar

  • [73] Boccaccini A.R., Stamboulis A.G., Rashid A., Roether J.A., Composite Surgical Sutures with Bioactive Glass Coating, J Biomed Mater Res B 2003, 67, 618-626.Google Scholar

  • [74] Boccaccini A.R., Minay E.J., Krause D., Bioglass Coatings on Superelastic NiTi Wires by Electrophoretic Deposition (EPD), Key Eng Mater 2006, 314, 219-224.Google Scholar

  • [75] Boccaccini A.R., Peters C., Roether J.A., Eifler D., Misra S.K., Minay E.J., Electrophoretic Deposition of Polyetheretherketone (PEEK) and PEEK/Bioglass Coatings on NiTi Shape Memory Alloy Wires, J Mater Sci 2006, 41, 8152-8159.CrossrefGoogle Scholar

  • [76] Esfahani S.I.R., Ebrahimi-Kahrizsangi R., Saleh D.M., Karbasi S., Bonding Strength, Hardness and Bioactivity of Nano Bioglass- Titania Nano Composite Coating Deposited on NiTi Nails, Curr Nanosci 2011, 7, 568-575.CrossrefGoogle Scholar

  • [77] Wilson J., Pigott G.H., Schoen F.J., Hench L.L., Toxicology and Biocompatibility of Bioglasses, J Biomed Mater Res 1981, 15, 805-817.Google Scholar

  • [78] Miguez-Pacheco V., Hench L.L., Boccaccini A.R., Bioactive Glasses Beyond Bone and Teeth: Emerging Applications in Contact with Soft Tissues, Acta Biomater 2015, 13, 1-15.Google Scholar

  • [79] Miguez-Pacheco V., Greenspan D., Hench L.L., Boccaccini A.R. Bioactive Glasses in Soft Tissue Repair, Am Ceram Soc Bull 2015, 94, 27-31.Google Scholar

  • [80] Gurtner G.C., Werner S., Barrandon Y., Longaker M.T., Wound Repair and Regeneration, Nature 2008, 453, 314-321.Google Scholar

  • [81] Blaker J.J., Nazhat S.N., Boccaccini A.R., Development and Characterisation of Silver-Doped Bioactive Glass-Coated Sutures for Tissue Engineering and Wound Healing Applications, Biomaterials 2004, 25, 1319-1329.Google Scholar

  • [82] Pratten J., Nazhat S.N., Blaker J.J., Boccaccini A.R., In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating, J Biomater Appl 2004, 19, 47-57.Google Scholar

  • [83] Chernousova S., Epple M., Silver as Antibacterial Agent: Ion, Nanoparticle, and Metal, Angew Chem Int Ed 2013, 52, 1636-1653.CrossrefGoogle Scholar

  • [84] Salah Hameed A., Al-Warid R.J., Abass Obaid I., Anti-bacterial Action of Multi-component Bioactive Glass Coating for Surgical Suture, J Babylon Univ Pure Appl Sci 2016, 24, 1395-1400.Google Scholar

  • [85] Shah Mohammadi M., Stähli C., Nazhat S.N., Bioactive glasses for wound healing, In: Ylänen H.O. (Ed.), Bioactive glasses: materials, properties and applications, Woodhead Publishing Ltd (Elsevier), Amsterdam, 2011, pp. 246-266.Google Scholar

  • [86] Baino F., How Can Bioactive Glasses Be Useful in Ocular Surgery?, J Biomed Mater Res A 2015, 103, 1259-1275.Google Scholar

  • [87] Baino F., Perero S., Ferraris S., Miola M., Balagna C., Verné E., Vitale-Brovarone C., Coggiola A., Dolcino D., Ferraris M., Biomaterials for Orbital Implants and Ocular Prostheses: Overview and Future Prospects, Acta Biomater 2014, 10, 1064-1087.Google Scholar

  • [88] Naik M.N., Murthy R.K., Honavar S.G., Comparison of Vascularization of Medpor and Medpor-Plus Orbital Implants: a Prospective, Randomized Study, Ophthal Plast Reconstr Surg 2007, 23, 463-467.CrossrefGoogle Scholar

  • [89] Ma X., Schou K.R., Maloney-Schou M., Harwin F.M., Ng J.D., The Porous Polyethylene/Bioglass Spherical Orbital Implant: a Retrospective Study of 170 Cases, Ophthal Plast Reconstr Surg 2011, 27, 21-27.Google Scholar

  • [90] Ye J., He J., Wang C., Yao K, Gou Z., Copper-Containing Mesoporous Bioactive Glass Coatings on Orbital Implants for Improving Drug Delivery Capacity and Antibacterial Activity, Biotechnol Lett 2014, 36, 961-968.CrossrefGoogle Scholar

  • [91] Baino F., Ferraris S., Miola M., Perero S., Verné E., Coggiola A., Dolcino D., Ferraris M., Novel Antibacterial Ocular Prostheses: Proof of Concept and Physico-Chemical Characterization,Mater Sci Eng C 2016, 60, 467-474.CrossrefGoogle Scholar

  • [92] Baino F., Ferraris S., Miola M., Ferraris M., Antibacterial Nanocoatings for Ocular Applications, Adv Sci Technol 2017, 102, 24-28.Google Scholar

  • [93] Gomaa A., Comyn O., Liu C., Keratoprostheses in Clinical Practice - a Review, Clin Exp Ophthlmol 2010, 38, 211-224.Google Scholar

  • [94] Linnola R.J., Happonen R.P., Andersson O.H., Vedel E.A., Yli- Urpo U., Krause U., Laatikainen L., Titaniumand Bioactive Glass- Ceramic Coated TitaniumasMaterials for Keratoprosthesis, Exp Eye Res 1996, 63, 471-478. CrossrefGoogle Scholar

  • [95] Meyer J.U., Retina Implant - a BioMEMS Challenge, Sens Actuat A 2002, 97-98, 1-9.Google Scholar

  • [96] Ong J.M., Da Cruz L., The Bionic Eye: a Review, Clin Exp Ophthalmol 2012, 40, 6-17.Google Scholar

  • [97] Bilsel Y., Abci I., The Search for Ideal Hernia Repair: Mesh, Materials and Types, Int J Surg 2012, 10, 317-321.Google Scholar

  • [98] Muzio G., Perero S., Miola M., Oraldi M., Ferraris S., Verné E., Festa F., Canuto R.A., Festa V., Ferraris M., Biocompatibility versus Peritoneal Mesothelial Cells of Polypropylene Prostheses for Hernia Repair, Coated with a Thin Silica/Silver Layer, J Biomed Mater Res B, in press. DOI: 10.1002/jbm.b.33697CrossrefGoogle Scholar

  • [99] Twardowski Z.J., Nichols W.K., Peritoneal dialysis access and exit site care including surgical aspects, In: Gokal R., Khanna R., Krediet R., Nolph K. (Eds.), Textbook of Peritoneal Dialysis, Amsterdam, Kluwer Academic Publishers, 2000, pp. 307-362.Google Scholar

  • [100] Marotta J.S., LaTorre G., Batich C., Hench L.L., Percutaneous Biofixed Medical Implants, US Patent no. US5990380 A, 1999.Google Scholar

  • [101] Ross E.A., Batich C.D., Clapp W.L., Sallustio J.E., Lee N.C., Tissue Adhesion to Bioactive Glass-Coated Silicone Tubing in a Rat Model of Peritoneal Dialysis Catheters and Catheter Tunnels, Kidney Int 2003, 63, 702-708.Google Scholar

About the article

Received: 2016-11-14

Revised: 2017-03-22

Accepted: 2017-04-02

Published Online: 2017-04-21

Published in Print: 2017-04-25

Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 1–17, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0001.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Carolina Kaminski Sanz, Aline Raybolt dos Santos, Marcelo Henrique Prado da Silva, Rubens Marçal, Elena Mavropoulos Tute, Elvis Lopez Meza, Alexandre Mello, Fabricio Frizera Borghi, and Sergio Alvaro de Souza Camargo
Ceramics International, 2019, Volume 45, Number 14, Page 18052
Udo R. Eckstein, Rainer Detsch, Neamul H. Khansur, Martin Brehl, Ulrike Deisinger, Dominique de Ligny, Aldo R. Boccaccini, and Kyle G. Webber
Ceramics International, 2019, Volume 45, Number 12, Page 14728
Ahmed H. Touny, Mohamed M. Saleh, Hany M. Abd El-Lateef, and Mahmoud M. Saleh
Applied Physics Reviews, 2019, Volume 6, Number 2, Page 021303
Francesco Baino, Enrica Verné, Elisa Fiume, Oscar Peitl, Edgar D. Zanotto, Simone M. Brandão, and Silvana A. Schellini
International Journal of Applied Ceramic Technology, 2019, Volume 16, Number 5, Page 1850
Roman A. Surmenev and Maria A. Surmeneva
Current Opinion in Biomedical Engineering, 2019, Volume 10, Page 35
Francesco Baino, Elisa Fiume, Jacopo Barberi, Saeid Kargozar, Juliana Marchi, Jonathan Massera, and Enrica Verné
International Journal of Applied Ceramic Technology, 2019, Volume 16, Number 5, Page 1762
Francesco Baino, Joaquim Minguella-Canela, Feza Korkusuz, Petek Korkusuz, Berna Kankılıç, María Montealegre, M. De los Santos-López, and Chiara Vitale-Brovarone
International Journal of Molecular Sciences, 2019, Volume 20, Number 3, Page 722
Hugo R. Fernandes, Anuraag Gaddam, Avito Rebelo, Daniela Brazete, George E. Stan, and José M. F. Ferreira
Materials, 2018, Volume 11, Number 12, Page 2530
Nasrin Esfahanizadeh, Mohammad Reza Nourani, Abbas Bahador, Nasrin Akhondi, and Mostafa Montazeri
Biomedical Glasses, 2018, Volume 4, Number 1, Page 95
Souvik Sahoo, Arijit Sinha, Vamsi Krishna Balla, and Mitun Das
Journal of Materials Research, 2018, Page 1
Journal of Functional Biomaterials, 2018, Volume 9, Number 1, Page 24
Francesco Baino, Sepideh Hamzehlou, and Saeid Kargozar
Journal of Functional Biomaterials, 2018, Volume 9, Number 1, Page 25
Francesco Baino, Elisa Fiume, Marta Miola, and Enrica Verné
International Journal of Applied Ceramic Technology, 2018
M. Rizwan, M. Hamdi, and W. J. Basirun
Journal of Biomedical Materials Research Part A, 2017

Comments (0)

Please log in or register to comment.
Log in