Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

High Borate Networks as a Platform to Modulate Temporal Release of Therapeutic Metal Ions Gallium and Strontium

Kathleen O’Connell / Ulrike Werner-Zwanziger
  • Department of Chemistry and Institute for Research in Materials, Dalhousie University, Halifax, Nova Scotia, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Helen O’Shea / Daniel Boyd
Published Online: 2017-06-08 | DOI: https://doi.org/10.1515/bglass-2017-0002

Abstract

The effect of increasing substitutions of Ga2O3:Na2O on the structure and contingent properties, of six quaternary high borate glasses was evaluated. Component ion release and particularly gallium ion release was studied post extraction, under simulated physiological conditions. Increasing substitutions of Ga2O3:Na2O (i.e. 0:1 - 6:4) resulted in destabilization of the glass network, observed by increases in component ion release and half-life of release. However, at ≥ 6:4 Ga2O3:Na2O ratio, network stabilization appeared to occur, resulting in a decrease in ion release half-life and total ion release for B, Sr, and Ga at 720 h of extraction. A linear release profile for strontium was provided by each glass composition, and for gallium by composition GB202 (70B2O3-20SrO-6Na2O-4Ga2O3) and GB203 (70B2O3-20SrO-4Na2O-6Ga2O3) for up to 720 h. 11B MAS NMR reveals that the replacement of Na2O with Ga2O3 (in the studied composition range) causesa linear increase of three-fold coordinated B[3] groups at the expense of B[4] groups. The data indicates the potential formation of GaO4-tetrahedra, associated with network stabilization.

References

  • [1] Miguez-Pacheco V., Hench L.L., Boccaccini A.R., Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater., 2015, 13, 1-15.CrossrefGoogle Scholar

  • [2] Jones J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater., 2013, 9, 4457-86.CrossrefGoogle Scholar

  • [3] Baino F., Novajra G., Miguez-Pacheco V., Boccaccini A.R., Vitale- Brovarone C., Bioactive glasses: Special applications outside the skeletal system, J Non-Cryst. Solids, 2016, 432, 15-30.Google Scholar

  • [4] Salem R., Lewandowski R.J., Chemoembolization and Radioembolization for Hepatocellular Carcinoma, Clin. Gastroenterol Hepatol., 2013, 11, 604-11.CrossrefGoogle Scholar

  • [5] Kennedy A., Coldwell D., Sangro B., Wasan H., Salem R., Radioembolization for the Treatment of Liver Tumors: General Principles, Am. J. Clin. Oncol., 2012, 35, 91-9.CrossrefGoogle Scholar

  • [6] Fu Q., Saiz E., Rahaman M.N., Tomsia A.P., Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Mater. Sci. Eng. C., 2011, 31, 1245-56.CrossrefGoogle Scholar

  • [7] Fu Q., Rahaman M.N., Bal B.S., Bonewald L.F., Kuroki K., Brown R.F., Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation, J. Biomed. Mater. Res. A., 2010, 95, 172-9.Google Scholar

  • [8] Huang W., Day D.E., Kittiratanapiboon K., Rahaman M.N., Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions, J. Mater. Sci.: Mater. Med., 2006, 17, 583-96.Google Scholar

  • [9] Gu Y., Huang W., Rahaman M.N., Day D.E., Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses, Acta. Biomater., 2013, 9, 9126-36.CrossrefGoogle Scholar

  • [10] Bi L., Rahaman M.N., Day D.E., Brown Z., Samujh C., Liu X., Mohammadkhah A., Dusevich V., Eick J. D., Bonewald L. F., Effect of bioactive borate glass microstructure on bone regeneration, angiogenesis, and hydroxyapatite conversion in a rat calvarial defect model, Acta Biomater., 2013, 9, 8015-26.Google Scholar

  • [11] Bi L., Jung S., Day D., Neidig K., Dusevich V., Eick D., Bonewald L., Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds, J. Biomed. Mater. Res. A., 2012, 100, 3267-75.CrossrefGoogle Scholar

  • [12] O’Connell K., Hanson M., O’Shea H., Boyd D., Linear release of strontium ions from high borate glasses via lanthanide/alkali substitutions, J. Non-Cryst. Solids, 2015, 430, 1-8.Google Scholar

  • [13] Shelby J.E., Introduction to glass science and technology. 2nd ed., Royal Society of Chemistry, 2005.Google Scholar

  • [14] Yiannopoulos Y.D., Chryssikos G.D., Kamitsos E.I., Structure and properties of alkaline earth borate glasses, Phys. Chem. Glasses, 2001, 42, 164-72.Google Scholar

  • [15] Doweidar H., El-Damrawi G.M., Moustafa Y.M., Ramadan R.M., Density of mixed alkali borate glasses: A structural analysis, Phys. B. Condens. Matter., 2005, 362, 123-32.Google Scholar

  • [16] Wu J., Stebbins J.F., Rouxel T., Cation Field Strength Effects on Boron Coordination in Binary Borate Glasses, J. Am. Ceram. Soc., 2014, 97, 2794-801.Google Scholar

  • [17] Kroeker S., Aguiar P.M., Cerquiera A., Okoro J., Alkali dependence of tetrahedral boron in alkali borate glasses, Phys. Chem. Glasses: Eur. J. Glass. Sci. Technol. B., 2006, 47, 393-6.Google Scholar

  • [18] Kaur G., Pandey O.P., Singh K., Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses, J. Non-Cryst. Solids, 2012, 358, 2589-96.Google Scholar

  • [19] Valappil S.P., Ready D., Abou-Neel E.A., Pickup D.M., O’Dell L.A., Chrzanowski W., Newport R.J., Wilson M., Knowles J.C., Controlled delivery of antimicrobial gallium ions from phosphatebased glasses, Acta. Biomater., 2009, 5, 1198-210.Google Scholar

  • [20] Place E.S., Evans N.D., Stevens M.M., Complexity in biomaterials for tissue engineering, Nat. Mater., 2009, 8, 457-70.Google Scholar

  • [21] Habibovic P., Barralet J.E., Bioinorganics and biomaterials: Bone repair, Acta Biomater., 2011, 7, 3013-26.CrossrefGoogle Scholar

  • [22] Lakhkar N.J., Lee I.-H., Kim H.-W., Salih V., Wall I.B., Knowles J.C., Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses, Adv. Drug Deliv. Rev., 2013, 65, 405-20.CrossrefGoogle Scholar

  • [23] Rabiee S.M., Nazparvar N., Azizian M., Vashaee D., Tayebi L., Effect of ion substitution on properties of bioactive glasses: A review, Ceram Int., 2015, 41, 7241-51.Google Scholar

  • [24] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011, 32, 2757-74.CrossrefGoogle Scholar

  • [25] Mauro J.C., Philip C.S., Vaughn D.J., Pambianchi M.S., Glass Science in the United States: Current Status and Future Directions, Int. J. Appl. Glass Sci., 2014 5, 2-15.Google Scholar

  • [26] Srinivasa Reddy M., Naga Raju G., Nagarjuna G., Veeraiah N., Structural influence of aluminium, gallium and indium metal oxides by means of dielectric and spectroscopic properties of CaO-Sb2O3-B2O3 glass system, J. Alloys Compd., 2007, 438, 41-51.Google Scholar

  • [27] Wren A.W., Keenan T., Coughlan A., Laflr F.R., Boyd D., Towler M.R., Hall M.M, Characterisation of Ga2O3-Na2O-CaO-ZnO- SiO2 bioactive glasses, J. Mater. Sci., 2013, 48, 3999-4007.CrossrefGoogle Scholar

  • [28] Lusvardi G., Malavasi G., Menabue L., Shruti S., Galliumcontaining phosphosilicate glasses: Functionalization and invitro bioactivity, Mater. Sci. Eng. C., 2013, 33, 3190-6.CrossrefGoogle Scholar

  • [29] Mohini G.J., Krishnamacharyulu N., Baskaran G.S., Veeraiah N., Role of Ga2O3 ions on the structural and bioactive behaviour of B2O3-SiO2-P2O5-Na2O-CaO glass system. IJETR., 2015, 3, 441-447.Google Scholar

  • [30] Bernstein L.R., Mechanisms of therapeutic activity for gallium, Pharmacol. Rev., 1998, 50, 665-82.Google Scholar

  • [31] Chitambar C.R., Medical Applications and Toxicities of Gallium Compounds, Int. J. Environ. Res. Public Health, 2010, 7, 2337-61.CrossrefGoogle Scholar

  • [32] Collery P., Keppler B.K.,Madoulet C., Desoize B., Galliumin cancer treatment, Crit. Rev. Oncol. Hematol., 2002, 42, 283-96.CrossrefGoogle Scholar

  • [33] Chitambar C.R., Gallium-containing anticancer compounds, Future Med. Chem., 2012, 4, 1257-72.Google Scholar

  • [34] Chitambar C.R., Antholine W.E., Iron-Targeting Antitumor Activity of Gallium Compounds and Novel Insights Into Triapine r - Metal Complexes, Antioxid. Redox. Signal, 2013, 18, 956-72.Google Scholar

  • [35] Jakupec M.A., Galanski M., Arion V.B., Hartinger C.G., Keppler B.K., Antitumour metal compounds: more than theme and variations, Dalton Trans., 2008, 2,183-94.Google Scholar

  • [36] Torti S.V., Torti F.M., Ironing Out Cancer. Cancer Res., 2011, 71, 1511-4.Google Scholar

  • [37] Andrews N.C., Forging a field: the golden age of iron biology, Blood, 2008, 112, 219-30.Google Scholar

  • [38] Ballouche M., Cornelis P., Baysse C., Iron metabolism: a promising target for antibacterial strategies, Recent Pat. Antiinfect. Drug Discov., 2009, 4, 190-205.Google Scholar

  • [39] Kaneko Y., Thoendel M., Olakanmi O., Britigan B.E., Singh P.K., The transition metal galliumdisrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity, J. Clin. Invest., 2007, 117, 877-88.Google Scholar

  • [40] Fu Q., Rahaman M.N., Fu H., Liu X., Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation, J. Biomed. Mater. Res. A., 2010, 95A, 164-71.Google Scholar

  • [41] Yao A., Wang D., Huang W., Fu Q., Rahaman M.N., Day D.E., In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior, J. Am. Ceram. Soc., 2007, 90, 303-6.CrossrefGoogle Scholar

  • [42] Deliormanli A.M., Liu X., Rahaman M.N., Evaluation of borate bioactive glass scaffoldswith different pore sizes in a rat subcutaneous implantation model, J. Biomater. Appl., 2012, 28, 643-53.CrossrefGoogle Scholar

  • [43] Liu X., Xie Z., Zhang C., Pan H., Rahaman M.N., Zhang X., Fu Q., Huang W., Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection, J. Mater. Sci.: Mater. Med., 2010, 21, 575-82.CrossrefGoogle Scholar

  • [44] Costa P., Lobo J.M.S., Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci., 2001, 13, 123-33.CrossrefGoogle Scholar

  • [45] Shaikh H.K., Kshirsagar R.V., Patil S.G., Mathematical Models for Drug Release Characterisation: A Review, WJPPS, 2015, 4, 324-338.Google Scholar

  • [46] Mackenzie K.J.D., Smith M.E., Multinuclear Solid-State NMR of Inorganic Materials, 1st ed., Pergamon, 2002Google Scholar

  • [47] Kroeker S., Stebbins J. F., Three-Coordinated Boron-11 Chemical Shifts in Borates, Inorg Chem., 2001, 40, 6239-46.CrossrefGoogle Scholar

  • [48] Singhvi G., Singh M., Review: in-vitro drug release characterization models, Int. J. Pharm. Stud. Res., 2011, 2, 77-84.Google Scholar

  • [49] da Silva MAFM, Sosman LP, Yokaichiya F,Mazzocchi VL, Parente CBR, Mestnik-Filho J, et al. Neutron Powder Diffraction Measurements of the Spinel MgGa2O4: Cr 3+ - A Comparative Study between the High Flux Diffractometer D2B at the ILL and the High Resolution Powder Diffractometer Aurora at IPEN, J. Phys.: Conf. Ser., 2012, 8, 1-8Google Scholar

  • [50] Subbalakshmi P., Veeraiah N., Dielectric dispersion and certain other physical properties of PbO-Ga 2O3-P 2O5 glass system, Mater Lett., 2002, 56, 880-8.Google Scholar

  • [51] KonijnendijkW. L., Stevels J. M., The structure of borate glasses studied by raman scattering, J Non-Cryst Solids, 1975, 18, 307-31.CrossrefGoogle Scholar

  • [52] Valappil S.P., Ready D., Neel E.A.A., Pickup D.M., Chrzanowski W., O’Dell L.A., Newport R. J., Smith M. E., Wilson M., Knowles J. C., AntimicrobialGallium-Doped Phosphate-Based Glasses, Adv Funct Mater., 2008, 18, 732-41.CrossrefGoogle Scholar

  • [53] WhiteW. B., Theory of corrosion of glass and ceramics, In: Clark D. E., Zoitos B. K., 1st ed., Corrosion of glass, ceramics, and ceramic superconductors: principles, testing, characterization, and applications, Park Ridge, N. J.: Noyes, 1992.Google Scholar

  • [54] George J. L., Brow R. K., In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy, J. Non-Cryst. Solids, 2015, 426, 116-24.Google Scholar

  • [55] Siepmann J., Siegel R. A., Rathbone M. J., Fundamentals and applications of controlled release drug delivery, 1st ed., Springer, 2012.Google Scholar

  • [56] Huang X., Brazel C. S., On the importance and mechanisms of burst release inmatrix-controlled drug delivery systems, J. Controlled Release, 2001, 73, 121-36.Google Scholar

  • [57] Nielsen S. P., The biological role of strontium, Bone, 2004, 35, 583-8.Google Scholar

  • [58] Marie P.J., Ammann P., Boivin G., Rey C., Mechanisms of Action and Therapeutic Potential of Strontium in Bone, Calcif. Tissue Int. 2001, 69, 121-9.Google Scholar

  • [59] Bonnelye E., Chabadel A., Saltel F., Jurdic P., Dual effect of strontiumranelate: Stimulataion of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone, 2008, 42, 129-38.Google Scholar

About the article

Received: 2017-02-27

Revised: 2017-04-24

Accepted: 2017-05-05

Published Online: 2017-06-08

Published in Print: 2017-04-25


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 18–29, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0002.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in