Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

BAG S53P4 putty as bone graft substitute – a rabbit model

Ilkka Saarenpää
  • Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland, 20521 Turku, Finland
  • Department of Clinical Medicine, University of Turku, 20014 Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Patricia Stoor
  • Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, 00029 Helsinki, Finland
  • University of Helsinki, 00014 Helsinki, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janek Frantzén
  • Corresponding author
  • Division of Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Turku, Finland, 20521 Turku, Finland
  • Department of Clinical Medicine, University of Turku, 20014 Turku, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-06 | DOI: https://doi.org/10.1515/bglass-2017-0003

Abstract

Bioactive glass (BAG) S53P4 granules represent a bone augmentation biomaterial for the surgical treatment of bony defects, even in challenging conditions such as osteomyelitis. The aim of this eight-week rabbit implantation study was to evaluate the biocompatibility and bone regeneration performance of a BAG S53P4 putty formulation following its implantation into the proximal tibia bone of twenty-eight New Zealand white rabbits. BAG S53P4 putty was compared to BAG S53P4 granules (0.5-0.8 mm) to evaluate whether the synthetic putty binder influences the bone regeneration of the osteostimulative granules. The putty formulation facilitates clinical use because of its mouldability, injectability and ease of mixing with autograft. Implantation of putty and granules into proximal tibia defects resulted in good osseointegration of the two groups. Both biomaterials were biocompatible, showed high new bone formation, high vascularization and periosteal growth. No signs of disturbed bone formation were observed due to the PEG-glycerol binder in the BAG S53P4 putty. Instead, intramedullary ossification and stromal cell reaction were more advanced in the putty group compared to the control group (p = 0.001 and p < 0.001). In conclusion, the novel mouldable BAG S53P4 putty showed reliable bone regeneration in bony defects without adverse tissue or cell reactions.

Keywords: Bioactive glass; putty; bone formation; vascularization

References

  • [1] El-GhannamA., Bone reconstruction: from bioceramics to tissue engineering, Expert. Rev. Med. Devices, 2005, 2, 87-101Google Scholar

  • [2] Coventry M.B., Tapper E.M., Pelvic instability: a consequence of removing iliac bone for grafting, J. Bone Joint Surg. Am., 1972, 54, 83-101Google Scholar

  • [3] Younger E.M., Chapman M.W., Morbidity at bone graft donor sites, J. Orthop. Trauma, 1989, 3, 192-195Google Scholar

  • [4] Goulet J.A., Senunas L.E., DeSilva G.L., Greenfield M.L., Autogenous iliac crest bone graft, complications and functional assessment, Clin. Orthop. Relat. Res., 1997, 339, 76-81Google Scholar

  • [5] Ubhi C.S., Morris D.L., Fracture and herniation of bowel at bone graft donor site in the iliac crest, Injury, 1984, 16, 202-203CrossrefGoogle Scholar

  • [6] Heary R.F., Schlenk R.P., Sacchieri T.A., Barone D., Brotea C., Persistent iliac crest donor site pain: independent outcome assessment, Neurosurgery, 2002, 50, 510-516Google Scholar

  • [7] Sawin P.D., Traynelis V.C., Menezes A.H., A comparative analysis of fusion rates and donor-site morbidity for autogenic rib and iliac crest bone grafts in posterior cervical fusions, J. Neurosurg., 1998, 88, 255-265Google Scholar

  • [8] Kurz L.T., Garfin S.R., Booth Jr. R.E., Harvesting autogenous iliac bone grafts - a review of complications and techniques, Spine, 1989, 14, 1324-1331Google Scholar

  • [9] Giannoudis P.V., Dinopoulos H., Tsiridis E., Bone substitutes: an update, Injury 2005, 36, S20-S27Google Scholar

  • [10] Hench L.L., Xynos I.D., Polak J.M., Bioactive glasses for in situ tissue regeneration, J. Biomater. Sci. Polymer Edn., 2004, 15, 543-562Google Scholar

  • [11] Hench L.L., The story of Bioglass®, J. Mater. Sci.: Mater. Med., 2006, 17, 967-978CrossrefGoogle Scholar

  • [12] Hench L.L., Genetic design of bioactive glass, J . Eur. Ceram. Soc., 2009, 29, 1257-1265CrossrefGoogle Scholar

  • [13] Jones J.R., Review of bioactive glass: from Hench to hybrids, Acta Biomater., 2013, 4457-4486CrossrefGoogle Scholar

  • [14] Fagerlund S., Hupa L., Hupa M., Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3- diol (Tris) buffer, Acta Biomater., 2013, 9, 5400-5410Web of ScienceGoogle Scholar

  • [15] Moreira-Gonzalez A., Lobocki C., Barakat K., Andrus L., Bradford M., Gilsdorf M., et al., Evaluation of 45S5 bioactive glass combined as a bone substitute in the reconstruction of critical size calvarial defects in rabbits, J. Craniofac. Surg., 2005, 16, 63-70CrossrefGoogle Scholar

  • [16] Amato M.M„ Blaydon S.M., Scribbick F.W. Jr., Belden C.J., Shore J.W., Neuhaus R.W., et al., Use of bioglass for orbital volume augmentation in enophthalmos: a rabbit model (oryctolagus cuniculus), Ophthal. Plast. Reconstr. Surg., 2003, 19, 455-465CrossrefGoogle Scholar

  • [17] Kobayashi H., Turner A.S., Seim H.B., Kawamoto T., Bauer T.W., Evaluation of a silica-containing bone graft substitute in a vertebral defect model, J. Biomed. Mater. Res. Part A, 2010, 92A, 596-603Google Scholar

  • [18] Lin E.C.C., Glycerol utilization and its regulation in mammals, Ann. Rev. Biochem., 1977, 46, 765-795CrossrefGoogle Scholar

  • [19] Webster R., Didier E., Harris, P., Siegel N., Stadler J., Tilbury L., et al., PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies, Drug Metab. Dispos., 2007, 35, 9-16Web of ScienceGoogle Scholar

  • [20] Drago L., Vassena C., Fenu S., De Vecchi E., Signori V., De Francesco R., et al., In vitro antibiofilm activity of bioactive glass S53P4, Future Microbiol., 2014, 9, 593-601Google Scholar

  • [21] Drago L., De Vecchi E., Bortolin M., Toscano M., Mattina R., Romano C.L., Antimicrobial activity and resistance selection of different bioglass S53P4 formulations against multidrug resistant strains, Future Microbiol., 2015, 10, 1293-1299Google Scholar

  • [22] Kankare J., Lindfors N. C., Reconstruction of vertebral bone defects using an expandable replacement device and bioactive glass S53P4 in the treatment of vertebral osteomyelitis: three patients and three pathogens, Scand. J. Surg., 2016, 105, 248- 253Web of ScienceGoogle Scholar

  • [23] Lindfors N., Romano C., Scarponi S., Lorenzo D., Monica B., Frantzén J., et al., Chapter 14: Bioactive glasses in infection treatment, In: Boccaccini A.R., Brauer D.S., Hupa L. (Eds.), Bioactive glasses: fundamentals, technology and applications, The Royal Society of Chemistry, Croydon, 2017Google Scholar

  • [24] Wren A.W., Cummins N.M., Towler M.R., Comparison of antibacterial properties of commercial bone cements and fillers with a zinc-based glass polyalkenoate cement, J.Mater. Sci., 2010, 45, 5244-5251Web of ScienceGoogle Scholar

  • [25] Shapiro S.S., Wilk M.B., An analysis of variance test for normality (complete samples), Biometrika, 1965, 52, 591-611CrossrefGoogle Scholar

  • [26] Mann H.B., Whitney D.R., On a test of whether one of two random variables is stochastically larger than the other, Ann.Math. Statist., 1947, 18, 50-60Google Scholar

  • [27] Morton D., Kemp R.K., Francke-Carroll S., Jensen K., McCartney J., Monticello T.M., et al., Best practices for reporting pathology interpretations with GLP toxicology studies, Toxicol. Pathol., 2006, 34, 806-809Google Scholar

  • [28] The International Organization for Standardization, ISO 10993- 1:2009 Biological evaluation of medical devices - part 1: Evaluation and testing within a risk management process, 2009, https://www.iso.org/obp/ui/#iso:std:iso:10993:-1:ed-4:v1:enGoogle Scholar

  • [29] Wang Z., Lu B., Chen L., Chang J., Evaluation of an osteostimulative putty in the sheep spine, J.Mater. Sci.:Mater. Med., 2011, 22, 185-191CrossrefGoogle Scholar

  • [30] Schallenberger M.A., Rossmeier K., Lovick H.M., Meyer T.R., Aberman H.M., Juda G.A., Comparison of the osteogenic potential of OsteoSelect demineralized bone matrix putty to NovaBone calcium-phosphosilicate synthetic putty in a cranial defect model, J. Craniofac. Surg., 2014, 25, 657-661CrossrefWeb of ScienceGoogle Scholar

  • [31] Fredericks D., Petersen E.B., Watson N., Grosland N., Gibson- Corley K., Smucker J., Comparison of two synthetic bone graft products in a rabbit posterolateral fusion model, Iowa Orthop. J. 2016, 36, 167-173Google Scholar

  • [32] Wilson J., Low S.B., Bioactive ceramics for periodontal treatment: comparative studies in the patus monkey, J. Appl. Biomater., 1992, 3, 123-129CrossrefGoogle Scholar

  • [33] Wilson J, Pigott G.H., Schoen F.J., Hench L.L., Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 1981, 15, 805-817CrossrefGoogle Scholar

About the article

Received: 2017-03-20

Revised: 2017-06-30

Accepted: 2017-07-23

Published Online: 2017-09-06

Published in Print: 2017-08-28


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 30–40, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0003.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in