Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Review - bioactive glass implants for potential application in structural bone repair

Mohamed N. Rahaman
  • Corresponding author
  • Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wei Xiao
  • Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States of America Qiang Fu: Corning Incorporated, Corning, NY 14830, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenhai Huang
  • Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai 200092, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-09-08 | DOI: https://doi.org/10.1515/bglass-2017-0005

Abstract

Bioactive glass particles andweak scaffolds have been used to heal small contained bone defects but an unmet challenge is the development of bioactive glass implants with the requisite mechanical reliability and in vivo performance to heal structural bone defects. Inadequate mechanical strength and a brittle mechanical response have been key concerns in the use of bioactive glass scaffolds in structural bone repair. Recent research has shown the capacity to create strong porous bioactive glass scaffolds and the ability of these scaffolds to heal segmental bone defects in small and large rodents at a rate comparable to autogenous bone grafts. Loading these strong porous scaffolds with bone morphogenetic protein-2 can significantly enhance their ability to regenerate bone. Recentwork has also shown that coating the external surface of strong porous scaffolds with an adherent biodegradable polymer can dramatically improve their load-bearing capacity in flexural loading and their work of fracture (a measure of toughness). These tough and strong bioactive glass-polymer composites with an internal architecture conducive to bone infiltration could provide optimal synthetic implants for structural bone repair.

Keywords : Bioactive glass for structural bone repair; bioactive glass composites; mechanical and in vivo evaluation of bioactive glass scaffolds

References

  • [1] Giannoudis P.V., Dinopoulos H., Tsiridis E., Bone Substitutes: An Update, Injury, 2005, 36S, S20-S37.CrossrefGoogle Scholar

  • [2] Laurencin C., Khan Y., El-Amin S.F., Bone Graft Substitutes, Expert Rev. Med. Devices, 2006, 3, 49-57. 3] Griflth L.G., Polymeric Biomaterials. Acta Mater., 2000, 48, 263-277.Google Scholar

  • [4] Agrawal C.M., Ray R.B., Biodegradable Polymer Scaffolds for Musculoskeletal Tissue Engineering, J. Biomed. Mater. Res., 2001, 55, 141-150.Google Scholar

  • [5] Goldstein S. A., Patil P.V., Moalli M.R., Perspectives on Tissue Engineering of Bone, Clin. Orthop. Rel. Res., 1999, 357, S419- S423.Google Scholar

  • [6] Kneser U., Schaefer D.J., Munder B., Klemt C., Andree C., Stark G.B., Tissue Engineering of Bone, Minim. Invasiv. Ther., 2002, 11, 107-116.Google Scholar

  • [7] Hench L.L., The Story of Bioglass, J. Mater. Sci. Mater. Med., 2006, 17, 967-978.CrossrefGoogle Scholar

  • [8] Rahaman M.N., Day D.E., Bal B.S., Fu Q., Jung S.B., Bonewald L.F., et al., Bioactive Glass in Tissue Engineering, Acta Biomater., 2011, 7, 2355-2373.Google Scholar

  • [9] Jones J.R., Review of Bioactive Glass: From Hench to Hybrids. Acta Biomater., 2013, 9, 4457-4486.CrossrefGoogle Scholar

  • [10] Gorustovich A.A., Roether J.A., Boccaccini A.R., Effect of Bioactive Glasses on Angiogenesis: A Review of In Vitro and In Vivo Evidences, Tissue Eng. B, 2010, 16, 199-207.Google Scholar

  • [11] Hoppe A., Güldal N.S., Boccaccini A.R., A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics, Biomaterials, 2011, 32, 2757-2774.CrossrefGoogle Scholar

  • [12] Habibovic P., Barralet J.E., Bioinorganics and Biomaterials: Bone Repair, Acta Biomater., 2011, 7, 3013-3026.CrossrefGoogle Scholar

  • [13] Lakhkar N.J., Lee I-H., Kim H.W., Salih V., Wall I.B., Knowles J.C., Bone Formation Controlled by Biologically Relevant Inorganic Ions: Role and Controlled Delivery from Phosphate-based Glasses, Adv. Drug Deliv. Rev., 2013, 65, 405-420.CrossrefGoogle Scholar

  • [14] Hoppe A., Mouriño V., Boccaccini A.R., Therapeutic Inorganic Ions in Bioactive Glasses to Enhance Bone Formation and Beyond, Biomater. Sci., 2013, 1, 254-256.Google Scholar

  • [15] Fu Q., Saiz E., Rahaman M.N., Tomsia A.P., Bioactive Glass Scaffolds for Bone Tissue Engineering: State of the Art and Future Perspectives, Mater. Sci. Eng. C., 2011, 31, 1245-1256.CrossrefGoogle Scholar

  • [16] Fu Q., Saiz E., Rahaman M.N., Tomsia A.P., Toward Strong Yet Tough Glass and Ceramic Scaffolds, Adv. Func.Mater., 2013, 23, 2461-2476.Google Scholar

  • [17] Baino F., Vitale-Brovarone C., Mechanical properties and reliability of glass-ceramic foam scaffolds for bone repair, Mater Lett., 2014, 118, 27-30.Google Scholar

  • [18] Liu X., Rahaman M.N., Fu Q., Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response, Acta Biomater., 2011, 7, 406-416.CrossrefGoogle Scholar

  • [19] Liu X., Rahaman M.N., Fu Q., Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects, Acta Biomater., 2013, 9, 4889-4898.CrossrefGoogle Scholar

  • [20] Doiphode N.D., Huang T.S., Leu M.C., Rahaman M.N., Day D.E., Freeze Extrusion Fabrication of 13-93 Bioactive Glass Scaffolds for Bone Repair, J. Mater. Sci. Mater. Med., 2011, 22, 515-523.CrossrefGoogle Scholar

  • [21] Huang T.S., Doiphode N.D., Rahaman M.N., Leu M.C., Bal B.S., Day D.E., Porous and Strong Bioactive Glass (13-93) Scaffolds Prepared by Freeze Extrusion Fabrication, Mater. Sci. Eng. C, 2011, 31, 1482-1489.CrossrefGoogle Scholar

  • [22] Fu Q., Saiz E., Tomsia A.P., Bioinspired Strong and Highly Porous Glass Scaffolds, Adv. Funct. Mater., 2011, 21, 1058-1063.CrossrefGoogle Scholar

  • [23] Fu Q., Saiz E., Tomsia A.P., Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration, Acta Biomater., 2011, 7, 3547-3554.CrossrefGoogle Scholar

  • [24] Deliomanli A., Rahaman M.N., Direct-write Assembly of Silicate and Borate Bioactive Glass Scaffolds for Bone Repair, J. Eur. Ceram. Soc., 2012, 32, 3637-3646.CrossrefGoogle Scholar

  • [25] Liu X., Rahaman M.N., Hilmas G.E., Bal B.S., Mechanical Properties of Bioactive Glass Scaffolds Fabricated by Robotic Deposition for Structural Bone Repair, Acta Biomater., 2013, 9, 7025-7034.CrossrefGoogle Scholar

  • [26] Liu X., Rahaman M.N., Liu Y., Bal B.S., Bonewald L.F., Enhanced Bone Regeneration in Surface-modified and BMP-loaded Bioactive Glass (13-93) Scaffolds in a Rat Calvarial Defect Model, Acta Biomater., 2013, 9, 7506-7517.CrossrefGoogle Scholar

  • [27] Xiao W., Asle Zaeem M., Bal B.S., Rahaman M.N., Creation of Bioactive Glass (13-93) Scaffolds for Structural Bone Repair Using a Combined Finite Element Modeling and Rapid Prototyping Approach, Mater. Sci. Eng. C, 2016, 68, 651-662.Google Scholar

  • [28] Lin Y., Xiao W., Liu X., Bal B.S., Bonewald L.F., Rahaman M.N., Long-term Bone Regeneration, Mineralization and Angiogenesis in Rat Calvarial Defects Implanted with Strong Porous Bioactive Glass (13-93) Scaffolds, J. Non-Cryst. Solids, 2016, 432, 120-129.Google Scholar

  • [29] Bi L., Zobell B., Liu X., Rahaman M.N., Bonewald L.F., Healing of Critical-size Segmental Defects in Rat Femora Using Strong Porous Bioactive Glass Scaffolds. Mater. Sci. Eng. C, 2014, 42, 816-824.Google Scholar

  • [30] JiaW-T., Lau G., HuangW., Zhang C., Tomsia A.P., Fu Q., Bioactive Glass for Large Bone Repair, Adv. Healthcare Mater., 2015, 4, 2842-2848.Google Scholar

  • [31] XiaoW., Zaeem M.A., Bal B.S., Rahaman M.N., Tough and Strong Porous Bioactive Glass-PLA Composites for Structural Bone Repair, J. Mater. Sci. Mater Med., 2017, 52, 9039-9054.Google Scholar

  • [32] Gerhardt L-C., Boccaccini A.R., Bioactive Glass and Glass- Ceramic Scaffolds for Bone Tissue Engineering,Materials, 2010, 3, 3867-3910.Google Scholar

  • [33] Carano R.A., Filvaroff E.H., Angiogenesis and Bone Repair, Drug Discov. Today, 2003, 8, 980-989.Google Scholar

  • [34] Hulbert S.F., Young F.A., Mathews R.S., Klawitter J.J., Talbert C.D., Stelling F.H., Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses, J. Biomed. Mater. Res., 1970, 4, 433-456.Google Scholar

  • [35] Karageorgiou V., Kaplan D., Potential of 3D Biomaterial Scaffolds and Ostogenesis, Biomaterials, 2005, 26, 5474-5491.CrossrefGoogle Scholar

  • [36] Hutmacher D.W., Scaffolds in Tissue Engineering Bone and Cartilage, Biomaterials, 2000, 21, 2529-2543.Google Scholar

  • [37] Yao A., Wang D., Huang W., Fu Q., Rahaman M.N., Day D.E., In Vitro Bioactive Characteristics of Borate-based Glasses with Controllable Degradation Behavior, J. Am. Ceram. Soc., 2007, 90, 303-306.Google Scholar

  • [38] Fu Q., Rahaman M.N., Fu H., Liu X., Silicate, Borosilicate, and Borate Bioactive Glass Scaffolds with Controllable Degradation Rate for Bone Tissue Engineering Applications. I. Preparation and In Vitro Degradation, J. Biomed. Mater. Res. A, 2010, 95, 164-171.Google Scholar

  • [39] Rahaman M.N., Bioactive Ceramics and Glasses, in Tissue Engineering Using Ceramics and Polymers, 2nd edition. Edited by Boaccaccini AR, Ma PX. Woodhead Publishing, Cambridge, UK, 2014, p. 67-114.Google Scholar

  • [40] Martínez-Vázquez F.J., Perera F.H., Miranda P., Pajares A., Guiberteau F., Improving the Compressive Strength of Bioceramic Robocast Scaffolds by Polymer Infiltration, Acta Biomater., 2010, 6, 4361-4368.CrossrefGoogle Scholar

  • [41] Miranda P., Pajares A., Saiz E., Tomsia A.P., Guiberteau F., Mechanical Properties of Calcium Phosphate Scaffolds Fabricated by Robocasting, J. Biomed. Mater. Res. A, 2008, 85, 218-227.Google Scholar

  • [42] Crowninshield R.D., Brand R.A., Johnston R.C., Milroy J.C., The Effect of Femoral Stem Cross-Sectional Geometry on Cement Stresses in Total Hip Reconstruction, Clin. Orthop. Relat. Res., 1980, 146, 71-77.Google Scholar

  • [43] Verdonschot N., Huiskes R., Creep Behavior of Hand-mixed Simplex P Bone Cement Under Cyclic Tensile Loading, J. Appl. Biomater., 1994, 5, 235-243.CrossrefGoogle Scholar

  • [44] Chen Q.Z., Boccaccini A.R., Poly(D,L-Lactic Acid) Coated 45S5 Bioglassr-based Scaffolds: Processing and Characterization, J. Biomed. Mater. Res. A, 2006, 77, 445-457.Google Scholar

  • [45] Peroglio M., Gremillard L., Gauthier C., Chazeau L., Verrier S., Alini M., et al., Mechanical Properties and Cytocompatibility of Poly(e-Caprolactone)-infiltrated Biphasic Calcium Phosphate Scaffolds with Bimodal Pore Distribution, Acta Biomater., 2010, 6, 4369-4379.CrossrefGoogle Scholar

  • [46] Day D.E., Mohammadkhah A., Biodegradable Composite Scaffold for Repairing Defects in Load-Bearing Bones, U.S. Patent 20140277578A1, September 18, 2014.Google Scholar

  • [47] Kannan R.Y., Salacinski H.J., Sales K., Butler P., Seifalian A.M., The Roles of Tissue Engineering and Vascularisation in the Development of Microvascular Networks: A Review, Biomaterials, 2005, 26, 1857-1875.Google Scholar

  • [48] Hofmann A., Ritz U., Verrier S., Eglin D., Alini M., Fuchs S., et al., The Effect of Human Osteoblasts on Proliferation and Neovessel Formation of Human Umbilical Vein Endothelial Cells in a Long-term 3D Co-culture on Polyurethane Scaffolds, Biomaterials, 2008, 29, 4217-4226.Google Scholar

  • [49] Wang H., Zhao S., Zhou J., Shen Y., Huang W., Zhang C., et al., Evaluation of Borate Bioactive Glass Scaffolds as a Controlled Delivery System for Copper Ions in Stimulating Osteogenesis and Angiogenesis in Bone Healing, J. Mater. Chem. B, 2014, 2, 8547-8557.Google Scholar

  • [50] Cowan C.M., Aghaloo T., Chou Y.F., Walder B., Zhang X., Soo C., et al., MicroCT Evaluation of Three-dimensional Mineralization in Response to BMP-2 Doses In Vitro and in Critical Sized Rat Calvarial Defects, Tissue Eng., 2007, 13, 501-512.CrossrefGoogle Scholar

  • [51] Zara J.N., Siu R.K., Zhang X, Shen J., Ngo R., Lee M., et al., High Doses of Bone Morphogenetic Protein-2 Induce Structurally Abnormal Bone and Inflammation In Vivo. Tissue Eng. A, 2011, 17, 1389-1399.Google Scholar

  • [52] LeCronier D.J., Papakonstantinou J.S., Gheevarughese V., Beran C.D., Walter N.E., Atkinson P.J., Development of an Interlocked Nail for Segmental Defects in the Rabbit Tibia, P. I. Mech. Eng. H., 2012, 226, 330-336.Google Scholar

About the article

Received: 2017-05-23

Revised: 2017-08-09

Accepted: 2017-08-26

Published Online: 2017-09-08

Published in Print: 2017-09-26


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 56–66, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0005.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lilian de Siqueira, Rubia F. Gouveia, Liliana Grenho, Fernando J. Monteiro, Maria H. Fernandes, and Eliandra S. Trichês
Journal of Materials Science, 2018
[2]
Quan Shi, Zhi-Yong Li, Liliana Liverani, Judith Roether, Qiang Chen, and Aldo R. Boccaccini
International Journal of Applied Ceramic Technology, 2018

Comments (0)

Please log in or register to comment.
Log in