Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
See all formats and pricing
More options …

Preparation of CaO-SiO2-CuO bioactive glasses-embedded anodic alumina with improved biological activities

Siyu Ni
  • Corresponding author
  • Key Lab of Eco-Textile, Ministry of Education, Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Mei
  • College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shirong Ni / Ran Cui
  • College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaohong Li
  • College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Feng Hong
  • College of Chemistry, Chemical Engineering and Biotechnology; Donghua University, North Renmin Road 2999, Shanghai 201620, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas J. Webster
  • Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, 02115, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chengtie Wu
  • State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-10-12 | DOI: https://doi.org/10.1515/bglass-2017-0006


To improve bone cell cytocompatibility properties of porous anodic alumina (PAA) and implement anti-bacterial properties, amorphous CaO-SiO2-CuO materials were loaded into PAA nano-pores (termed CaO-SiO2- CuO/PAA) by a facile ultrasonic-assisted sol-dipping strategy. The surface features and chemistry of the obtained CaO-SiO2-CuO/PAA were investigated by a field emission scanning microscope (FESEM), an energy-dispersive Xray spectrometer (EDS) and an X-ray photoelectron spectroscopy (XPS). The ability of the CaO-SiO2-CuO/PAA specimens to form apatite via a bio-mineralization processwas evaluated by soaking them in simulated body fluid (SBF) in vitro. The surface microstructure and chemical properties after soaking in SBFwere characterized. The release of ions into the SBF was also measured. In addition, rat osteoblasts and two types of bacterial were cultured on the samples to determine their cytocompatibility and antibacterial properties. The results showed that the amorphous CaO-SiO2-CuO materials were successfully decorated into PAA nano-pores and at the same time maintained their nano-featured surfaces. The CaO-SiO2-CuO/PAA samples induced apatite-mineralization in SBF. Meanwhile, the CaO-SiO2-CuO/PAA samples demonstrated great potential for promoting the proliferation of osteoblasts and inhibiting Escherichia coli (E. coli) as well as Staphylococcus. aureus (S. aureus) growth. Specifically, there was an 86.5±4.1% reduction in E. coli, an 88.0 ± 2.2% reduction in S. aureus for the CaO-SiO2-CuO/PAA surfaces compared to PAA controls. The capability to promote osteoblast proliferation and better antibacterial activity of CaO-SiO2- CuO/PAA may be attributed to the fact that Cu ions can be slowly and constantly released from the samples. Importantly, this was achieved without the use of antibiotics or any pharmaceutical agent. Ultimately, these results suggest that the CaO-SiO2-CuO/PAA substrates possessed improved bone cell cytocompatibility and high antibacterial properties leading to a promising bioactive coating candidate for enhanced orthopedic applications.

Keywords : Porous anodic alumina; CaO-SiO2; Copper


  • [1] Brüggemann D., Nanoporous aluminium oxide membranes as cell interfaces, J. Nanomater., 2013, 2013, 1-18.Web of ScienceGoogle Scholar

  • [2] Chen W., Wu J.S., Xia X.H., Porous anodic alumina with continuously manipulated pore/cell size, ACS Nano, 2008, 2, 959-965.CrossrefWeb of ScienceGoogle Scholar

  • [3] Li X.H., Ni S.Y., Webster T.J., In vitro apatite formation on porous anodic alumina induced by a phosphorylation treatment, J. Biomater. Appl., 2014, 29, 321-328.Web of ScienceGoogle Scholar

  • [4] Chung S.H., Son S.J., Min J., The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates, Nanotechnology, 2010, 21, 125104.Google Scholar

  • [5] Wang H.J., Sun Y.Y., Cao Y., Wang K., Yang L., Zhang Y.D., Zheng Z., Is there an optimal topographical surface in nanoscale affecting protein adsorption and cell behaviors? Part II, J. Nanopart. Res., 2012, 14, 862-871.CrossrefGoogle Scholar

  • [6] Thakure S., Massou S., Benoliel A.M., Bongrand P., Hanbucken M., Sengupta K., Depthmatters: cells grown on nano-porous anodic alumina respond to pore depth, Nanotechnology, 2012, 23, 255101.Web of ScienceGoogle Scholar

  • [7] Pedimonte B.J., Moest T., Luxbacher T., von Wilmowsky C., Fey T., Schlegel K.A., Greil P., Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence, Acta Biomater., 2014, 10, 968-974.Google Scholar

  • [8] Ma S.H., Scaraggi M., Wang D.A., Wang X.L., Liang Y.M., Liu W.M., Dini D., Zhou F., Nanoporous Substrate-infiltrated hydrogels: a bioinspired regenerable surface for high load bearing andtunable friction, Adv. Funct. Mater., 2015, 25, 7366-7374.Google Scholar

  • [9] Ni S.Y., Li C.Y., Ni S.R., Chen T., Webster T.J., Understanding improved osteoblast behavior on select nanoporous anodic alumina, Int. J. Nanomed., 2014, 9, 3325-3334.Web of ScienceGoogle Scholar

  • [10] Chen Z.T, Ni S.Y., Han S.W., Crawford R., Lu S., Wei F., Chang J., Wu C.T., Xiao Y., Nanoporous microstructures mediate osteogenesis by modulating the osteo-immune response of macrophages, Nanoscale, 2017, 9, 706-718.Google Scholar

  • [11] Walpole A.R., Xia Z.D., Wilson C.W., Trifltt J.T., Wilshaw P. R., A novel nano-porous alumina biomaterial with potential for loading with bioactive materials, J. Biomed. Mater. Res. A, 2009, 90A, 46-54.Google Scholar

  • [12] Briggs E.P., Walpole A.R., Wilshaw P.R., Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating, J. Maer. Sci. - Mater. M., 2004, 15, 1021-1029.Google Scholar

  • [13] Norman J.J., Desai T.A., Methods for fabrication of nanoscale topography for tissue engineering scaffolds, Ann. Biomed. Eng., 2006, 34, 89-101.CrossrefGoogle Scholar

  • [14] Offermanns V., Andersen O. Z., Riede G., Andersen I. H., Almtoft K.P., Sørensen S., Sillassen M., Jeppesen C.S., Rasse M., Foss M., Kloss F., Bone regenerating effect of surface-functionalized titanium implants with sustained-release characteristics of strontium in ovariectomized rats, Int. J. Nanomed., 2016, 11, 2431-2442.Web of ScienceGoogle Scholar

  • [15] Hu H., Zhang W., Oiao Y., Jiang X., Liu X., Ding C., Antibacterial activity and increased bone marrow stem cell functions of Znincorporated TiO2coatings on titanium, Acta Biomater., 2012, 8, 904-915.Google Scholar

  • [16] Ni S.Y., Chang J., In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics, J. Biomater. Appl., 2009, 24, 139-158.Web of ScienceGoogle Scholar

  • [17] Wu C.T., Chang J., A review of bioactive silicate ceramics, Biomed. Mater. 2013, 8, 032001.Google Scholar

  • [18] Hench L.L., The story of bioglass, J.Mater. Sci. -Mater. M., 2006, 17, 967-978.CrossrefGoogle Scholar

  • [19] Dermience M., Lognay G.,Mathieu F., Goyens P., Effects of thirty elements on bone metabolism, J. Trace Elem. Med. Biol., 2015, 6, 86-106.Google Scholar

  • [20] Wu C., Zhou Y., Xu M., Han P., Chen L., Chang J., Xiao Y., Coppercontaining mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 2013, 34, 422-433.CrossrefGoogle Scholar

  • [21] Shi M., Chen Z., Farnaghi S., Friis T., Mao X., Xiao Y., Wu C., Copper-doped mesoporous silica nanospheres, a promising immunomodulatory agent for inducing osteogenesis, Acta Biomater., 2016, 30, 334-344.Web of ScienceGoogle Scholar

  • [22] Stähli C., James-Bhasin M., Hoppe A., Boccaccini A.R., Nazhat S.N., Effect of ion release from Cu-doped 45S5 Bioglassr on 3D endothelial cell morphogenesis, Acta Biomater., 2015,19, 15-22.Web of ScienceGoogle Scholar

  • [23] Hoppe A., Meszaros R., Stähli C., Romeis S., Schmidt J., Peukert W., Marelli B., Nazhat S.N., Wondraczek L., Lao J., Jallot E., Boccaccini A.R., In vitro reactivity of Cu doped 45S5 Bioglassr Derived scaffolds for bone tissue engineering, J. Mater. Chem. B, 2013, 1, 5659-5674.Google Scholar

  • [24] Ren L., Wong H.M., Yan C.H., Yeung K.W.K., Yang K., Osteogenic ability of Cu-bearing stainless steel, J. Biomed., Mater., Res., Part B: Appl. Biomater., 2015, 103B, 1433-1444.Google Scholar

  • [25] Tian T., Wu C., Chang J., Preparation and in vitro osteogenic, angiogenic and antibacterial properties of cuprorivaite (CaCuSi4O10, Cup) bioceramics, RSC Adv., 2016, 6, 45840-45849.Google Scholar

  • [26] Kong N., Lin K., Li H., Chang J., Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate, J. Mater. Chem. B, 2014, 2, 1100-1110.Web of ScienceCrossrefGoogle Scholar

  • [27] Li X.H., Ni S.Y., Zhou X.P., Highly ordered porous anodic alumina with large diameter pores fabricated by an improved two-step anodization approach., J. Nanosci. Nanotechno., 2015, 15, 1725-1731.Web of ScienceGoogle Scholar

  • [28] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 2907-2915.CrossrefGoogle Scholar

  • [29] Ni S.Y., Chang J., Chou L., A novel bioactive porous CaSiO3 scaffold for bone tissue engineering, J. Biomed.Mater. Res. A, 2006, 76A, 196-205.Google Scholar

  • [30] Ni S.Y., Chang J., Chou L., Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro, J. Biomed. Mater. Res. Part B: Appl. Biomater., 2007, 80B, 174-183.Google Scholar

  • [31] Zhang W., Du K., Yan C., Wang F., Preparation and characterization of a novel Si-incorporated ceramic film on pure titanium by plasma electrolytic oxidation, Appl. Surf. Sci., 2008, 254, 5216-5223.Web of ScienceGoogle Scholar

  • [32] Liu P., Hensen E.J.M., Highly Eflcient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde, J. Am. Chem. Soc., 2013, 135, 14032-14035.Google Scholar

  • [33] Ni S.Y., Li X. H., Yang P.A., Ni S.R., Hong F., Webster T.J., Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials, Mat. Sci. Eng C - Mater., 2016, 58, 700-708.CrossrefGoogle Scholar

  • [34] Asharani P.V., Wu Y.L., Gong Z.Y., Valiyaveettil S., Toxicity of silver nanoparticles in zebrafish models, Nanotechnology, 2008, 19, 255102.Web of ScienceGoogle Scholar

  • [35] Park E.J., Yi J., Kim Y., Choi K., Park K., Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism, Toxicol. in vitro, 2010, 24, 872-878.Google Scholar

  • [36] Zhao L., Wang H., Huo K., Cui L., Zhang W., Ni H., Zhang Y., Wu Z., Chu P.K., Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomaterials, 2011, 32, 5706-5716.CrossrefGoogle Scholar

  • [37] Wu C., Chang J., Fan W., Bioactive mesoporous calcium-silicate nanoparticles with excellent mineralization ability, osteostimulation, drug-delivery and antibacterial properties for filling apex roots of teeth, J. Mater. Chem., 2012, 22, 16801-16809.CrossrefWeb of ScienceGoogle Scholar

  • [38] Abiaka C., Olusi S., Al-Awadhi A., Reference ranges of copper and zinc and the prevalence of their deficiencies in an Arab population aged 15-80 years, Biol. Trace Elem. Res., 2003, 91, 33-43.CrossrefGoogle Scholar

  • [39] Sanchez C., Lopez-Jurado M., Aranda P., Llopis J., Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors, Sci. Total Environ., 2010, 408, 1014-1020.Web of ScienceGoogle Scholar

  • [40] Baranowska M., Slota A.J., Eravuchira P.J., Macias G., Xifré- Pérez E., Pallares J., Ferré-Borrull J., Marsal L.F., Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path, Colloid. Surface. B, 2014, 122, 375-383.Web of ScienceGoogle Scholar

  • [41] Roach P., Farrar D., Perry C.C., Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry, J. Am. Chem. Soc., 2006, 128, 3939-3945.Google Scholar

  • [42] Wu S., Weng Z., Liu X., Yeung K.W.K., Chu P.K., Functionalized TiO2 based nanomaterials for biomedical applications, Adv. Funct. Mater., 2014, 24, 5464-5481.CrossrefGoogle Scholar

  • [43] Xu Z., Li M., Li X., Liu X., Ma F., Wu S., Yeung K.W.K., Han Y., Chu P.K., Antibacterial activity of silver doped titanate nanowires on Ti implants, ACS Appl. Mater. Interfaces, 2016, 8, 16584-16594.Web of ScienceGoogle Scholar

  • [44] Goh Y.F., Alshemary A.Z., Akram M., Bioactive Glass: An In-vitro comparative study of doping with nanoscale copper and silver particles, Int. J. Appl. Glass Sci., 2014, 5, 255-266.Web of ScienceGoogle Scholar

  • [45] Goudouri O.M., Kontonasaki E., Lohbauer U., Boccaccini A.R., Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy, Acta Biomater., 2014, 10, 3795-3810.Web of ScienceGoogle Scholar

About the article

Received: 2017-05-14

Revised: 2017-08-19

Accepted: 2017-09-02

Published Online: 2017-10-12

Published in Print: 2017-10-26

Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 67–78, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0006.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in