Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Influence of bioactive glass S53P4 granules and putty on osteomyelitis associated bacteria in vitro

Patricia Stoor
  • Corresponding author
  • Department of Oral and Maxillofacial Surgery, Helsinki University Hospital, Haartmaninkatu 4 E, 000 29 HUS, Helsinki, Finland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Janek Frantzen
  • Clinical Neurosciences, Department of Neurosurgery, Turku University Hospital, Hämeentie 11, 20521 Turku, Finland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-11-09 | DOI: https://doi.org/10.1515/bglass-2017-0007

Abstract

Bacterial infection of bone tissue and bone marrow, referred to as osteomyelitis, is a challenging clinical problem. In this study we analysed the influence of the granule size of the bone substitute bioactive glass (BAG) S53P4 and the novel putty material containing BAG S53P4 on four clinically important bacteria associated with osteomyelitis; Staphylococcus aureus, methicillin resistant Staphylococuus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Reference materials were the frequently used biomaterial in surgical bone grafting procedures; tricalcium phosphate and an inert glass. Powder of BAG S53P4 was used as a positive control. The materials were incubated with bacterial suspension and the viability of the microbeswas determined as colony forming units after cultivation on agar plates. All pathogens lost their viability in contact with the BAG S53P4 granules and the powder of the BAG S53P4. The reference materials tricalcium phosphate and the inert glass had no effect on the viability of the bacteria. The BAG S53P4 putty containing 0.5-0.8 mm granules did not show any antibacterial effect on any of the tested bacteria. New putty compositions need to be investigated to obtain antibacterial properties for this novel bone regeneration biomaterial.

Keywords: antibacterial effect; bioactive glass S53P4 putty; granule size; osteomyelitis associated pathogens

References

  • [1] Chadayammuri V, Herbert B, Hao J,Mavrogenis A, Quispe JC, Kim JW, Young H, Hake M, Mauffrey C. Factors associated with adverse postoperative outcomes in patients with long bone posttraumatic osteomyelitis. Eur J Orthop Surg Traumatol. 2017 Apr 28. doi:CrossrefGoogle Scholar

  • [2] Phieffer LS, Goulet JA. Delayed unions of the tibia. Instr Course Lect. 2006; 55:389-401.Google Scholar

  • [3] Schmidt AH, Finkemeier CG, Tornetta P 3rd. Treatment of closed tibial fractures. Instr Course Lect. 2003; 52:607-22.Google Scholar

  • [4] Kluytmans J, van Belkum A & Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 1997; 10:505-20.Google Scholar

  • [5] McAdam PR, Templeton KE, Edwards GF, Holden MT, Feil EJ, Aanensen DM, Bargawi HJ, Spratt BG, Bentley SD, Parkhill J, Enright MC, Holmes A, Girvan EK, Godfrey PA, Feldgarden M, Kearns AM, Rambaut A, Robinson DA, Fitzgerald JR. Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2012; 109:9107-12. Web of ScienceGoogle Scholar

  • [6] von Eiff G, Peters G & Heilmann C. Pathogenesis of infections due to coagulasenegative staphylococci. Lancet Infect Dis. 2002; 2: 677-85.CrossrefGoogle Scholar

  • [7] Murray PR, Rosenthal KS, Kobayashi GS, Pfaller MA. Medical Microbiology. Fourth Edition. Philadelphia. Elsevier Mosby, 2002:278-303.Google Scholar

  • [8] Chang YH, Tai CL, Hsu HY, Hsieh PH, Lee MS, Ueng SW. Liquid antibiotics in bone cement: an effective way to improve the efficiency of antibiotic release in antibiotic loaded bone cement. Bone Joint Res. 2014; 3:246-51.Google Scholar

  • [9] Evans RP, Nelson CL. Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1993; 295:37-42.Google Scholar

  • [10] Gergely I, Zazgyva A,Man A, Zuh SG, Pop TS. The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. Acta Microbiol Immunol Hung. 2014; 61:145-60.Google Scholar

  • [11] Tan HL, Lin WT, Tang TT. The use of antimicrobial-impregnated PMMA to manage periprosthetic infections: controversial issues and the latest developments. Int J Artif Organs. 2012; 35:832-9.Web of ScienceCrossrefGoogle Scholar

  • [12] Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta biomaterialia. 2011; 7:739-50.Google Scholar

  • [13] Ferguson JY, Dudareva M, Riley ND, Stubbs D, Atkins BL, McNally MA. The use of a biodegradable antibiotic-loaded calcium sulphate carrier containing tobramycin for the treatment of chronic osteomyelitis: a series of 195 cases. Bone Joint J. 2014; 96:829-36.Google Scholar

  • [14] Chadayammuri V, Hake M, Mauffrey C. Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Saf Surg. 2015; 9:32.Google Scholar

  • [15] Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G.Treatment of atrophic femoral non-unions according to the diamond concept: Results of one- and two-step surgical procedure. J Orthop. 2016; 14:123-33.Web of ScienceGoogle Scholar

  • [16] Virolainen P, Heikkilä J, Yli-Urpo A, Vuorio E, Aro HT: Histomorphometric andmolecular biologic comparison of bioactive glass granules and autogenous bone grafts in augmentation of bone defect healing. J Biomed Mater Res. 1997; 35:9-17.CrossrefGoogle Scholar

  • [17] Välimäki VV, Aro HT: Molecular basis for action of bioactive glasses as bone graft substitute, Review. Scand J Surg. 2006; 95:95-102.CrossrefGoogle Scholar

  • [18] Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola, T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E. Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci: Mater Med. 2008; 19:27-32.CrossrefWeb of ScienceGoogle Scholar

  • [19] Leppäranta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylänen H, Salonen JI, Viljanen MK, Eerola E. Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci: Mater Med. 2008; 19:547-51.Web of ScienceCrossrefGoogle Scholar

  • [20] Zhang D, Leppäranta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010; 93:475-83.Web of ScienceGoogle Scholar

  • [21] Drago L, Romano D, De Vecchi E, Vassena C, Logoluso N,Mattina R, Romano CL. Bioactive glass S53P4 for the adjunctive treatment of chronic osteomyelitis of the long bone: an in vitro and prospective study. BMC Inf Dis 2013; 13:584.Google Scholar

  • [22] Coraca-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M. Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titaniumdiscs in vitro. Journal of orthopaedic research : oflcial publication of the Orthopaedic Research Society. 2014; 32:175-7.Google Scholar

  • [23] Drago L, Vassena C, Fenu S, De Vecchi E, Signori V, De Francesco R, Romano CL. In vitro antibiofilm activity of bioactive glass S53P4. Future Microbiol. 2014; 9:593-601. Google Scholar

  • [24] Bortolin M, De Vecchi E, Romano‘ CL, Toscano M, Mattina R and Drago L. Antibiofilm Agents Against MDR Bacterial Strains: Is Bioactive Glass BAG-S53P4 Also Effective J Antimicrob Chemother. 2016; 71:123-7.Web of ScienceGoogle Scholar

  • [25] Drago L, De Vecchi E, Bortolin M, Toscano M, Mattina R and Romano‘ CL. Antimicrobial Activity and Resistance Selection of Different Bioglass S53P4 Formulations AgainstMultidrug Resistant Strains. Future Microbiol. 2015; 10:1293-9.Google Scholar

  • [26] Stoor P, Söderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998; 56:161-5.CrossrefGoogle Scholar

  • [27] Lindfors NC, Heikkilä JT, Koski I, Mattila K, Aho AJ. Bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2009; 90:131-6.Google Scholar

  • [28] Lindfors NC, Koski I, Heikkilä JT,Mattila K, Aho AJ. A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater. 2010; 94:157-64.Google Scholar

  • [29] Pernaa K, Koski I,Mattila K, Gullichsen E, Heikkila J, Aho A, Lindfors N. Bioactive glass S53P4 and autograft bone in treatment of depressed tibial plateau fractures - a prospective randomized 11-year follow-up. J Long Term Eff Med Implants. 2011; 21:139-48.Google Scholar

  • [30] Frantzén JP, Rantakokko J, Aro HT, Heinänen J, Kajander S, Gullichsen E, Kotilainen E, Lindfors NC. Instrumented spondylodesis in degenerative spondylolisthesis with bioactive glass and autologous bone: a prospective 11-year follow-up. J. Spinal Disord. Tech. 2011; 24:455-461.Web of ScienceCrossrefGoogle Scholar

  • [31] Rantakokko J, Frantzén JP, Heinänen J, Kajander S, Kotilainen E, Gullichsen E, Lindfors NC. Posterolateral spondylodesis using bioactive glass S53P4 and autogenous bone in instrumented unstable lumbar spine burst fractures. Scand. J. Surg. 2012; 101:66-71.CrossrefWeb of ScienceGoogle Scholar

  • [32] Lindfors N, Geurts J, Drago L, Arts JJ, Juutilainen V, Hyvönen P, Suda AJ, Domenico A, Artiaco S, Alizadeh C, Brychcy A, Bialecki J, Romano CL. Antibacterial Bioactive Glass, S53P4, for Chronic Bone Infections - AMultinational Study. Adv Exp Med Biol. 2017; 971:81-92.Google Scholar

  • [33] Romano CL, Logoluso N, Meani E, Romano D, De Vecchi E, Vassena C, Drago L. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J. 2014; Jun; 96:845-50.CrossrefGoogle Scholar

  • [34] Stoor P, Pulkkinen J, Grénman R. Bioactive glass S53P4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media. Ann Otol Rhinol Laryngol. 2010; 119:377-82.Web of ScienceGoogle Scholar

  • [35] Sarin J, Grenman R, Aitasalo K, Pulkkinen J. Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann Otol Rhinol Laryngol. 2012; 12:563-9.Web of ScienceGoogle Scholar

  • [36] Peltola M, Aitasalo K, Suonpää J, Yli-Urpo A. BAG S53P4 in frontal sinus obliteration: A long-term clinical experience. Head & Neck. 2006; 28:834-41.Google Scholar

  • [37] Kankare J, Lindfors NC: Reconstruction of Vertebral Bone Defects using an Expandable Replacement Device and Bioactive Glass S53P4 in the Treatment of Vertebral Osteomyelitis: Three Patients and Three Pathogens. Scand J Surg. 2016 Feb 29. pii: 1457496915626834.Google Scholar

  • [38] Geurts J, Vranken T, Chris Arts JJ. Treatment of osteomyelitis by means of bioactive glass - initial experience in the Netherlands. Nederlands Tijdschrift voor Orthopaedie, Vol 23, Nr 2, juni 2016.Google Scholar

  • [39] Vuorenoja K, Jalava J, Lindholm L, Tähtinen PA, Laine MK, Thorn K, Ruohola A. Detection of Streptococcus pneumoniae carriage by the Binax NOW test with nasal and nasopharyngeal swabs in young children. Eur J Clin Microbiol Infect Dis. 2012; 31:703-6.CrossrefWeb of ScienceGoogle Scholar

  • [40] Walenkamp GH, Vree TB, van Rens TJ. Gentamicin-PMMA beads. Pharmacokinetic and nephrotoxicological study. Clinical orthopaedics and related research. 1986; 205:171-83.Google Scholar

  • [41] Geurts J, Chris Arts JJ, Walenkamp GH. Bone graft substitutes in active or suspected infection. Contra-indicated or notInjury. 2011; 42:82-6.Google Scholar

About the article

Received: 2016-10-03

Revised: 2017-07-28

Accepted: 2017-10-14

Published Online: 2017-11-09

Published in Print: 2017-11-27


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 79–85, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0007.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Saeid Kargozar, Sepideh Hamzehlou, and Francesco Baino
Materials, 2017, Volume 10, Number 12, Page 1429

Comments (0)

Please log in or register to comment.
Log in