Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Long term effects of bioactive glass particulates on dental pulp stem cells in vitro

Sanaz Gholami
  • Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sheyda Labbaf
  • Corresponding author
  • Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arezou Baharlou Houreh
  • Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hung-Kai Ting
  • Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julian R. Jones
  • Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom of Great Britain and Northern Ireland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad-Hossein Nasr Esfahani
  • Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-07 | DOI: https://doi.org/10.1515/bglass-2017-0009

Abstract

Bioactive glasses (BG) are known for their ability to induce bone formation by the action of their dissolution products. Glasses can deliver active ions at a sustained rate, determined by their composition and surface area. Nanoporous sol-gel derived BGs can biodegrade rapidly, which can lead to a detrimental burst release of ions and a pHrise. The addition of phosphate into the glass can buffer the pH during dissolution. Here, dissolution of BG with composition 60 mol% SiO2, 28 mol% CaO and 12 mol% P2O5 at 600 μg/ml were investigated. Initially, the dissolution and apatite formation of the BG particulates were examined in simulated body fluid using FTIR and XRD. BG particulates were indirectly exposed to dental pulp stem cells, and the effect of 14 days continuous ion release on human dental pulp stem cells (hDPSC) viability and differentiation was evaluated. Alamar blue assay showed that cell proliferation was not inhibited by the continuous release of Ca, P and soluble silica. In fact, hDPSC in the presence of BG particulate displayed a higher density of mineralized nodules than untreated cells, as assessed by Alizarin red. The results will have a great contribution to the in vivo application of this particular BG.

Keywords: Bioactive glass particulates; dental pulp stem cell; bone tissue engineering; continuous ion release

References

  • [1] Hench LL, Splinter RJ, Allen W, Greenlee T. Bonding mechanisms atthe interface of ceramic prostheticmaterials. Journal of biomedical materialsresearch. 1971;5(6):117-41. Google Scholar

  • [2] Jones JR, Brauer DS, Hupa L, Greenspan DC. Bioglass and bioactiveglasses and their impact on healthcare. International Journal of Applied GlassScience. 2016;7(4):423-34. Google Scholar

  • [3] Gerhardt L-C, Boccaccini AR. Bioactive glass and glassceramicscaffolds for bone tissue engineering. Materials. 2010;3(7):3867-910.Google Scholar

  • [4] Hench LL, Paschall H. Direct chemical bond of bioactiveglassceramic materials to bone and muscle. Journal of biomedical materialsresearch. 1973;7(3):25-42.Google Scholar

  • [5] Oonishi H, Hench L, Wilson J, Sugihara F, Tsuji E, Matsuura M, etal. Quantitative comparison of bone growth behavior in granules of Bioglass, A-Wglass-ceramic, and hydroxyapatite. Journal of biomedical materials research.2000;51(1):37-46.Google Scholar

  • [6] Xynos I, Hukkanen M, Batten J, Buttery L, Hench L, Polak J.Bioglassr 45S5 stimulates osteoblast turnover and enhances boneformation in vitro: implications and applications for bone tissue engineering.Calcified Tissue International. 2000;67(4):321-9.Google Scholar

  • [7] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM.Geneexpression profiling of human osteoblasts following treatment with the ionicproducts of Bioglassr 45S5 dissolution. Journal of biomedicalmaterials research. 2001;55(2):151-7.Google Scholar

  • [8] Roether J, Boccaccini AR, Hench L, Maquet V, Gautier S,Jérôme R. Development and in vitro characterisation of novelbioresorbable and bioactive composite materials based on polylactide foams andBioglassr for tissue engineering applications. Biomaterials.2002;23(18):3871-8.Google Scholar

  • [9] Brauer DS. Bioactive glasses-structure and properties. Angewandte Chemie International Edition. 2015;54(14):4160-81.Web of ScienceGoogle Scholar

  • [10] Hupa L, Karlsson KH, Hupa M, Aro HT. Comparison of bioactiveglasses in vitro and in vivo. Glass Technology-European Journal of Glass Scienceand Technology Part A. 2010;51(2):89-92. Google Scholar

  • [11] Brückner R, Tylkowski M, Hupa L, Brauer DS. Controlling theion release from mixed alkali bioactive glasses by varying modifier ionic radiiand molar volume. Journal of Materials Chemistry B. 2016;4(18):3121-34.Google Scholar

  • [12] Hench LL. Opening paper 2015-some comments on bioglass: foureras of discovery and development. Biomed Glasses. 2015;1(1):1-11.Google Scholar

  • [13] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionicproducts of bioactive glass dissolution increase proliferation of humanosteoblasts and induce insulin-like growth factor II mRNA expression and proteinsynthesis. Biochemical and biophysical research communications.2000;276(2):461-5.Google Scholar

  • [14] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM.Geneexpression profiling of human osteoblasts following treatment with the ionicproducts of Bioglassr 45S5 dissolution. Journal of BiomedicalMaterials Research Part A. 2001;55(2):151-7.Google Scholar

  • [15] Hench LL, Xynos ID, Polak JM. Bioactive glasses for in situtissue regeneration. Journal of Biomaterials Science, Polymer Edition.2004;15(4):543-62.CrossrefGoogle Scholar

  • [16] Li H, Sun J. Effects of dicalcium silicate coating ionicdissolution products on human mesenchymal stem-cell proliferation and osteogenicdifferentiation. Journal of International Medical Research. 2011;39(1):112-28.CrossrefGoogle Scholar

  • [17] Sepulveda P, Jones JR, Hench LL. Characterization ofmeltderived 45S5 and sol-gel-derived 58S bioactive glasses. Journal offiiomedical materials research. 2001;58(6):734-40.Google Scholar

  • [18] Sepulveda P, Jones J, Hench L. In vitro dissolution ofmelt-derived 45S5 and sol-gel derived 58S bioactive glasses. Journal ofbiomedical materials research. 2002;61(2):301-11.Google Scholar

  • [19] Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA.Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Actabiomaterialia. 2013;9(11):9169-82.Google Scholar

  • [20] Houreh AB, Labbaf S, Ting H-K, Ejeian F, Jones JR, EsfahaniMHN. Influence of calciumand phosphorus release from bioactive glasses onviability and differentiation of dental pulp stem cells. Journal of MaterialsScience. 2017;52(15):8928-41.Google Scholar

  • [21] Ting HK, Page SJ, Poologasundarampillai G, Chen S, Yu B, HannaJV, et al. Phosphate content affects structure and bioactivity of sol-gelsilicate bioactive glasses. International Journal of Applied Glass Science.Google Scholar

  • [22] Gronthos S, Brahim J, Li W, Fisher L, Cherman N, Boyde A, et al.Stem cell properties of human dental pulp stem cells. Journal of dental Research.2002;81(8):531-5.Google Scholar

  • [23] Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W,Struys T, et al. Effect of isolation methodology on stem cell properties andmultilineage differentiation potential of human dental pulp stem cells. Cell andtissue research. 2013;353(1):65-78.Google Scholar

  • [24] Wang S, Gao X, Gong W, Zhang Z, Chen X, Dong Y. Odontogenicdifferentiation and dentin formation of dental pulp cells under nanobioactiveglass induction. Acta biomaterialia. 2014;10(6):2792-803.CrossrefGoogle Scholar

  • [25] Gong W, Huang Z, Dong Y, Gan Y, Li S, Gao X, et al. Ionicextraction of a novel nano-sized bioactive glass enhances differentiation andmineralization of human dental pulp cells. Journal of endodontics.2014;40(1):83-8.Google Scholar

  • [26] Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio LL,et al. Dental pulp stem cells: osteogenic differentiation and gene expression.Annals of the New York Academy of Sciences. 2011;1237(1):47-52.Google Scholar

  • [27] Khanna-Jain R, Mannerström B, Vuorinen A, Sándor GK,Suuronen R, Miettinen S. Osteogenic differentiation of human dental pulp stemcells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone)three-dimensional scaffolds. Journal of tissue engineering.2012;3(1):2041731412467998.Google Scholar

  • [28] Li R, Clark A, Hench L. An investigation of bioactive glasspowders by sol-gel processing. Journal of Applied Biomaterials. 1991;2(4):231-9.CrossrefGoogle Scholar

  • [29] Maçon AL, Kim TB, Valliant EM, Goetschius K, Brow RK, DayDE, et al. A unified in vitro evaluation for apatite-forming ability of bioactiveglasses and their variants. Journal of Materials Science: Materials in Medicine.2015;26(2):115.Google Scholar

  • [30] Nourbakhsh N, Talebi A, Mousavi B, Nadali F, Torabinejad M,Karbalaie K, et al. Isolation of mesenchymal stem cells from dental pulp ofexfoliated human deciduous teeth. Cell J. 2008;10(2):101-8.Google Scholar

  • [31] Uchida M, Kim HM, Kokubo T, Miyaji F, Nakamura T. Bonelikeapatite formation induced on zirconia gel in a simulated body fluid and itsmodified solutions. Journal of the American Ceramic Society. 2001;84(9):2041-4.Google Scholar

  • [32] Jones JR, Sepulveda P, Hench LL. Dose-dependent behavior offiioactive glass dissolution. Journal of biomedical materials research.2001;58(6):720-6.Google Scholar

  • [33] Tsigkou O, Jones JR, Polak JM, Stevens MM. Differentiation offetal osteoblasts and formation of mineralized bone nodules by 45S5Bioglassr conditioned medium in the absence of osteogenicsupplements. Biomaterials. 2009;30(21):3542-50.Google Scholar

  • [34] Salih V, Franks K, James M, Hastings G, Knowles J, Olsen I.Development of soluble glasses for biomedical use Part II: The biologicalresponse of human osteoblast cell lines to phosphate-based soluble glasses.Journal of Materials Science: Materials in Medicine. 2000;11(10):615-20.Google Scholar

  • [35] Nadeem D, Kiamehr M, Yang X, Su B. Fabrication and in vitroevaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bonetissue engineering. Materials Science and Engineering: C. 2013;33(5):2669-78.CrossrefGoogle Scholar

  • [36] Hoppe A, Güldal NS, Boccaccini AR. A review of thebiological response to ionic dissolution products from bioactive glasses andglass-ceramics. Biomaterials. 2011;32(11):2757-74.Google Scholar

  • [37] Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, JonesJR. Spherical bioactive glass particles and their interaction with humanmesenchymal stem cells in vitro. Biomaterials. 2011;32(4):1010-8.Google Scholar

  • [38] Chen QZ, Thompson ID, Boccaccini AR. 45S5Bioglassr-derived glass-ceramic scaffolds for bone tissueengineering. Biomaterials. 2006;27(11):2414-25. Google Scholar

  • [39] Zhou H, Wei J, Wu X, Shi J, Liu C, Jia J, et al. Thebio-functional role of calcium in mesoporous silica xerogels on the responses ofosteoblasts in vitro. Journal ofMaterials Science:Materials in Medicine.2010;21(7):2175-85.Google Scholar

  • [40] Gentleman E, Stevens MM, Hill R, Brauer DS. Surface propertiesand ion release from fluoride-containing bioactive glasses promote osteoblastdifferentiation and mineralization in vitro. Acta biomaterialia.2013;9(3):5771-9.CrossrefGoogle Scholar

  • [41] Chen L, Liu L,Wu C, Yang R, Chang J, Wei X. The extracts offiredigite bioceramics enhanced the pluripotency of human dental pulp cells.Journal of BiomedicalMaterials Research Part A. 2017.Google Scholar

  • [42] Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M. Cluster analysisand gene expression profiles: a cDNA microarray systembased comparison betweenhuman dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs)for tissue engineering cell therapy. Biomaterials. 2006;27(20):3766-81.CrossrefGoogle Scholar

About the article

Received: 2017-10-25

Revised: 2017-11-04

Accepted: 2017-11-18

Published Online: 2017-12-07

Published in Print: 2017-12-20


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 96–103, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0009.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hans Erling Skallevold, Dinesh Rokaya, Zohaib Khurshid, and Muhammad Sohail Zafar
International Journal of Molecular Sciences, 2019, Volume 20, Number 23, Page 5960
[2]
Elham Mahlooji, Masoud Atapour, and Sheyda Labbaf
Carbohydrate Polymers, 2019, Volume 226, Page 115299
[3]
M. Ravanbakhsh, S. Labbaf, F. Karimzadeh, A. Pinna, A. Baharlou Houreh, and M.H. Nasr-Esfahani
Materials Science and Engineering: C, 2019, Volume 104, Page 109994
[4]
M. Eatemad, S. Labbaf, A. Baharlou Houreh, and M. H. Nasr Esfahani
Regenerative Engineering and Translational Medicine, 2019, Volume 5, Number 3, Page 290

Comments (0)

Please log in or register to comment.
Log in