Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

1 Issue per year

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Influence of dissolution products of a novel Ca-enriched silicate bioactive glass-ceramic on VEGF release from bone marrow stromal cells

Preethi Balasubramanian
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Detsch
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leticia Esteban-Tejeda / Alina Grünewald
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José S. Moya / Aldo R. Boccaccini
  • Corresponding author
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/bglass-2017-0010

Abstract

This study evaluated the influence of ionic dissolution products of a novel Ca-enriched silicate bioactive glass compared to commercial available hydroxyapaptite samples (Endobonr) on cell activity and vascular endothelial growth factor (VEGF) release in vitro. Bone marrow stromal cells (ST-2) were cultivated with the supernatant of granules of different sizes and at different concentrations (0-1 wt/vol % of granules) for 48 h. In addition to in vitro studies, Ca-ion release from all as cell morphology observation revealed no cytotoxic effect of the released products from all tested materials. It was found that supernatants from granules in concentrations of 1 wt/vol %enhanced the VEGF release from ST2 cells, which is important as a marker of the vascularisation ability of the glass during the bone healing process.

Keywords : bioactive glasses; angiogenesis; VEGF; ion release

References

  • [1] S. V. Dorozhkin, M. Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chemie Int. Ed. 41 (2002) 3130-3146. doi:CrossrefGoogle Scholar

  • [2] M.D. Kwan, B.J. Slater, D.C.Wan, M.T. Longaker, Cell-based therapies for skeletal regenerative medicine, Hum. Mol. Genet. 17 (2008) 93-98. doi:CrossrefGoogle Scholar

  • [3] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487-1510. doi:CrossrefGoogle Scholar

  • [4] J.C. Roldán, R. Detsch, S. Schaefer, E. Chang, M. Kelantan, W. Waiss, T.E. Reichert, G.C. Gurtner, U. Deisinger, Bone formation and degradation of a highly porous biphasic calciumphosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model., J. Craniomaxillofac. Surg. 38 (2010) 423-30. doi:CrossrefGoogle Scholar

  • [5] N. Ferrara, Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, Endocr. Rev. 25 (2004) 581-611. doi:CrossrefGoogle Scholar

  • [6] R. Detsch, A.R. Boccaccini, The role of osteoclasts in bone tissue engineering, J. Tissue Eng. Regen. Med. 9 (2015) 1133-1149. doi:CrossrefWeb of ScienceGoogle Scholar

  • [7] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 4 (2004) 743-765. doi:CrossrefGoogle Scholar

  • [8] D. Kaigler, G. Pagni, C.-H. Park, S.A. Tarle, R.L. Bartel, W. V. Giannobile, Angiogenic and Osteogenic Potential of Bone Repair Cells for Craniofacial Regeneration, Tissue Eng. Part A. 16 (2010) 2809-2820. doi:CrossrefGoogle Scholar

  • [9] L.H. Nguyen, N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, A. Khademhosseini, Vascularized Bone Tissue Engineering: Approaches for Potential Improvement, Tissue Eng. Part B Rev. 18 (2012) 363-382. doi:CrossrefGoogle Scholar

  • [10] M. Nakagawa, T. Kaneda, T. Arakawa, et al., Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett. 473(2) (2000) 161-164.Google Scholar

  • [11] L. Munaron, Intracellular Calcium, Endothelial Cells and Angiogenesis, Recent Pat. Anticancer. Drug Discov. 1 (2006) 105-119. doi:CrossrefGoogle Scholar

  • [12] L. Munaron, a Fiorio Pla, Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology., Curr. Med. Chem. 16 (2009) 4691-4703. doi:CrossrefWeb of ScienceGoogle Scholar

  • [13] E.C. Kohn, R. Alessandro, J. Spoonster, R.P. Wersto, L.A. Liotta, Angiogenesis: role of calcium-mediated signal transduction., Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 1307-11. doi:CrossrefGoogle Scholar

  • [14] A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences., Tissue Eng. Part B. Rev. 16 (2010) 199-207. doi:CrossrefGoogle Scholar

  • [15] Y. Lin, R.F. Brown, S.B. Jung, D.E. Day, Angiogenic effects of borate glass microfibers in a rodent model, J. Biomed. Mater. Res. - Part A. 102 (2014) 4491-4499. doi:CrossrefGoogle Scholar

  • [16] L.C. Gerhardt, K.L. Widdows, M.M. Erol, C.W. Burch, J.A. Sanz-Herrera, I. Ochoa, R. Stämpfli, I.S. Roqan, S.Gabe, T. Ansari, A.R. Boccaccini, The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds, Biomaterials. 32 (2011) 4096-4108. doi:CrossrefWeb of ScienceGoogle Scholar

  • [17] R. Detsch, P. Stoor, A. Grünewald, J.A. Roether, N.C. Lindfors, A.R. Boccaccini, Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone, J. Biomed. Mater. Res. - Part A. 102 (2014) 4055-4061. doi:CrossrefGoogle Scholar

  • [18] P. Balasubramanian, L. Hupa, B. Jokic, R. Detsch, A. Grünewald, A.R. Boccaccini, Angiogenic potential of boron-containing bioactive glasses: in vitro study, J. Mater. Sci. 52 (2017) 8785-8792. doi:CrossrefWeb of ScienceGoogle Scholar

  • [19] R. Detsch, et al. Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells, Nanomedicine. 11 (2016) 1093-1105.Web of ScienceGoogle Scholar

  • [20] B. Cabal, L. Alou, F. Cafini, R. Couceiro, D. Sevillano, L. Esteban-Tejeda, F. Guitián, R. Torrecillas, J.S. Moya, A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications, Sci. Rep. 4 (2014). doi:CrossrefWeb of ScienceGoogle Scholar

  • [21] L. Esteban-Tejeda, K. Zheng, C. Prado, B. Cabal, R. Torrecillas, A.R. Boccaccini, J.S. Moya, Bone tissue scaffolds based on antimicrobial SiO2-Na2O-Al2O3-CaOB2O3 glass, J. Non. Cryst. Solids. 432 (2016) 73-80. doi:CrossrefGoogle Scholar

  • [22] D. Tadic, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials. 25 (2004) 987-994. doi:CrossrefGoogle Scholar

  • [23] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglassr-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 2414-2425. doi:CrossrefGoogle Scholar

  • [24] A.J. Friedenstein, U.F. Deriglasova, N.N. Kulagina, A.F. Panasuk, S.F. Rudakowa, E.A. Luriá, I.A. Ruadkow, Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method, Exp. Hematol. 2 (1974) 83-92. doi:CrossrefGoogle Scholar

  • [25] A.J. Friedenstein, K. V Petrakova, A.I. Kurolesova, G.P. Frolova, Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues, Transplantation. 6 (1968) 230-247. doi:CrossrefGoogle Scholar

  • [26] O. Castaño, N. Sachot, E. Xuriguera, E. Engel, J.A. Planell, J.H. Park, G.Z. Jin, T.H. Kim, J.H. Kim, H.W. Kim, Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds, ACS Appl. Mater. Interfaces. 6 (2014) 7512-7522. doi:CrossrefGoogle Scholar

  • [27] H. Oliveira, S. Catros, C. Boiziau, R. Siadous, J. Marti-Munoz, R. Bareille, S. Rey, O. Castano, J. Planell, J. Amedee, E. Engel, The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment, Acta Biomater. 29 (2016) 435-445.doi:CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-07-30

Revised: 2017-11-22

Accepted: 2017-11-28

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 104–110, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0010.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in