Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Influence of dissolution products of a novel Ca-enriched silicate bioactive glass-ceramic on VEGF release from bone marrow stromal cells

Preethi Balasubramanian
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rainer Detsch
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leticia Esteban-Tejeda / Alina Grünewald
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José S. Moya / Aldo R. Boccaccini
  • Corresponding author
  • Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/bglass-2017-0010


This study evaluated the influence of ionic dissolution products of a novel Ca-enriched silicate bioactive glass compared to commercial available hydroxyapaptite samples (Endobonr) on cell activity and vascular endothelial growth factor (VEGF) release in vitro. Bone marrow stromal cells (ST-2) were cultivated with the supernatant of granules of different sizes and at different concentrations (0-1 wt/vol % of granules) for 48 h. In addition to in vitro studies, Ca-ion release from all as cell morphology observation revealed no cytotoxic effect of the released products from all tested materials. It was found that supernatants from granules in concentrations of 1 wt/vol %enhanced the VEGF release from ST2 cells, which is important as a marker of the vascularisation ability of the glass during the bone healing process.

Keywords : bioactive glasses; angiogenesis; VEGF; ion release


  • [1] S. V. Dorozhkin, M. Epple, Biological and Medical Significance of Calcium Phosphates, Angew. Chemie Int. Ed. 41 (2002) 3130-3146. doi:CrossrefGoogle Scholar

  • [2] M.D. Kwan, B.J. Slater, D.C.Wan, M.T. Longaker, Cell-based therapies for skeletal regenerative medicine, Hum. Mol. Genet. 17 (2008) 93-98. doi:CrossrefGoogle Scholar

  • [3] L.L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc. 74 (1991) 1487-1510. doi:CrossrefGoogle Scholar

  • [4] J.C. Roldán, R. Detsch, S. Schaefer, E. Chang, M. Kelantan, W. Waiss, T.E. Reichert, G.C. Gurtner, U. Deisinger, Bone formation and degradation of a highly porous biphasic calciumphosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model., J. Craniomaxillofac. Surg. 38 (2010) 423-30. doi:CrossrefGoogle Scholar

  • [5] N. Ferrara, Vascular Endothelial Growth Factor: Basic Science and Clinical Progress, Endocr. Rev. 25 (2004) 581-611. doi:CrossrefGoogle Scholar

  • [6] R. Detsch, A.R. Boccaccini, The role of osteoclasts in bone tissue engineering, J. Tissue Eng. Regen. Med. 9 (2015) 1133-1149. doi:CrossrefWeb of ScienceGoogle Scholar

  • [7] A.J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: State of the art and future trends, Macromol. Biosci. 4 (2004) 743-765. doi:CrossrefGoogle Scholar

  • [8] D. Kaigler, G. Pagni, C.-H. Park, S.A. Tarle, R.L. Bartel, W. V. Giannobile, Angiogenic and Osteogenic Potential of Bone Repair Cells for Craniofacial Regeneration, Tissue Eng. Part A. 16 (2010) 2809-2820. doi:CrossrefGoogle Scholar

  • [9] L.H. Nguyen, N. Annabi, M. Nikkhah, H. Bae, L. Binan, S. Park, Y. Kang, Y. Yang, A. Khademhosseini, Vascularized Bone Tissue Engineering: Approaches for Potential Improvement, Tissue Eng. Part B Rev. 18 (2012) 363-382. doi:CrossrefGoogle Scholar

  • [10] M. Nakagawa, T. Kaneda, T. Arakawa, et al., Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett. 473(2) (2000) 161-164.Google Scholar

  • [11] L. Munaron, Intracellular Calcium, Endothelial Cells and Angiogenesis, Recent Pat. Anticancer. Drug Discov. 1 (2006) 105-119. doi:CrossrefGoogle Scholar

  • [12] L. Munaron, a Fiorio Pla, Endothelial calcium machinery and angiogenesis: understanding physiology to interfere with pathology., Curr. Med. Chem. 16 (2009) 4691-4703. doi:CrossrefWeb of ScienceGoogle Scholar

  • [13] E.C. Kohn, R. Alessandro, J. Spoonster, R.P. Wersto, L.A. Liotta, Angiogenesis: role of calcium-mediated signal transduction., Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 1307-11. doi:CrossrefGoogle Scholar

  • [14] A.A. Gorustovich, J.A. Roether, A.R. Boccaccini, Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences., Tissue Eng. Part B. Rev. 16 (2010) 199-207. doi:CrossrefGoogle Scholar

  • [15] Y. Lin, R.F. Brown, S.B. Jung, D.E. Day, Angiogenic effects of borate glass microfibers in a rodent model, J. Biomed. Mater. Res. - Part A. 102 (2014) 4491-4499. doi:CrossrefGoogle Scholar

  • [16] L.C. Gerhardt, K.L. Widdows, M.M. Erol, C.W. Burch, J.A. Sanz-Herrera, I. Ochoa, R. Stämpfli, I.S. Roqan, S.Gabe, T. Ansari, A.R. Boccaccini, The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds, Biomaterials. 32 (2011) 4096-4108. doi:CrossrefWeb of ScienceGoogle Scholar

  • [17] R. Detsch, P. Stoor, A. Grünewald, J.A. Roether, N.C. Lindfors, A.R. Boccaccini, Increase in VEGF secretion from human fibroblast cells by bioactive glass S53P4 to stimulate angiogenesis in bone, J. Biomed. Mater. Res. - Part A. 102 (2014) 4055-4061. doi:CrossrefGoogle Scholar

  • [18] P. Balasubramanian, L. Hupa, B. Jokic, R. Detsch, A. Grünewald, A.R. Boccaccini, Angiogenic potential of boron-containing bioactive glasses: in vitro study, J. Mater. Sci. 52 (2017) 8785-8792. doi:CrossrefWeb of ScienceGoogle Scholar

  • [19] R. Detsch, et al. Nanoscale bioactive glass activates osteoclastic differentiation of RAW 264.7 cells, Nanomedicine. 11 (2016) 1093-1105.Web of ScienceGoogle Scholar

  • [20] B. Cabal, L. Alou, F. Cafini, R. Couceiro, D. Sevillano, L. Esteban-Tejeda, F. Guitián, R. Torrecillas, J.S. Moya, A New Biocompatible and Antibacterial Phosphate Free Glass-Ceramic for Medical Applications, Sci. Rep. 4 (2014). doi:CrossrefWeb of ScienceGoogle Scholar

  • [21] L. Esteban-Tejeda, K. Zheng, C. Prado, B. Cabal, R. Torrecillas, A.R. Boccaccini, J.S. Moya, Bone tissue scaffolds based on antimicrobial SiO2-Na2O-Al2O3-CaOB2O3 glass, J. Non. Cryst. Solids. 432 (2016) 73-80. doi:CrossrefGoogle Scholar

  • [22] D. Tadic, A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone, Biomaterials. 25 (2004) 987-994. doi:CrossrefGoogle Scholar

  • [23] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglassr-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials. 27 (2006) 2414-2425. doi:CrossrefGoogle Scholar

  • [24] A.J. Friedenstein, U.F. Deriglasova, N.N. Kulagina, A.F. Panasuk, S.F. Rudakowa, E.A. Luriá, I.A. Ruadkow, Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method, Exp. Hematol. 2 (1974) 83-92. doi:CrossrefGoogle Scholar

  • [25] A.J. Friedenstein, K. V Petrakova, A.I. Kurolesova, G.P. Frolova, Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues, Transplantation. 6 (1968) 230-247. doi:CrossrefGoogle Scholar

  • [26] O. Castaño, N. Sachot, E. Xuriguera, E. Engel, J.A. Planell, J.H. Park, G.Z. Jin, T.H. Kim, J.H. Kim, H.W. Kim, Angiogenesis in bone regeneration: Tailored calcium release in hybrid fibrous scaffolds, ACS Appl. Mater. Interfaces. 6 (2014) 7512-7522. doi:CrossrefGoogle Scholar

  • [27] H. Oliveira, S. Catros, C. Boiziau, R. Siadous, J. Marti-Munoz, R. Bareille, S. Rey, O. Castano, J. Planell, J. Amedee, E. Engel, The proangiogenic potential of a novel calcium releasing biomaterial: Impact on cell recruitment, Acta Biomater. 29 (2016) 435-445.doi:CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-07-30

Revised: 2017-11-22

Accepted: 2017-11-28

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Biomedical Glasses, Volume 3, Issue 1, Pages 104–110, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2017-0010.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hamada Elsayed, Michele Secco, Federico Zorzi, Katharina Schuhladen, Rainer Detsch, Aldo R. Boccaccini, and Enrico Bernardo
Materials, 2019, Volume 12, Number 23, Page 3970
Preethi Balasubramanian, Antonio J. Salinas, Sandra Sanchez-Salcedo, Rainer Detsch, Maria Vallet-Regi, and Aldo R. Boccaccini
Journal of Non-Crystalline Solids, 2018

Comments (0)

Please log in or register to comment.
Log in