Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Amine-Functionalized Mesoporous Silica Nanoparticles: A New Nanoantibiotic for Bone Infection Treatment

Daniel Pedraza
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jaime Díez
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Isabel-Izquierdo-Barba
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  • CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Montserrat Colilla
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  • CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María Vallet-Regí
  • Corresponding author
  • Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
  • CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-24 | DOI: https://doi.org/10.1515/bglass-2018-0001

Abstract

This manuscript reports an effective new alternative for the management of bone infection by the development of an antibiotic nanocarrier able to penetrate bacterial biofilm, thus enhancing antimicrobial effectiveness. This nanosystem, also denoted as “nanoantibiotic”, consists in mesoporous silica nanoparticles (MSNs) loaded with an antimicrobial agent (levofloxacin, LEVO) and externally functionalized with N-(2-aminoethyl)-3- aminopropyltrimethoxysilane (DAMO) as targeting agent. This amine functionalization provides MSNs of positive charges, which improves the affinity towards the negatively charged bacteria wall and biofilm. Physical and chemical properties of the nanoantibiotic were studied using different characterization techniques, including Xray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption porosimetry, elemental chemical analysis, dynamic light scattering (DLS), zeta (ζ)-potential and solid-state nuclear magnetic resonance (NMR). “In vial” LEVO release profiles and the in vitro antimicrobial effectiveness of the different released doses were investigated. The efficacy of the nanoantibiotic against a S. aureus biofilm was also determined, showing the practically total destruction of the biofilm due to the high penetration ability of the developed nanosystem. These findings open up promising expectations in the field of bone infection treatment.

Keywords: Mesoporous Silica Nanoparticles; Aminefunctionalization; Bacteria and Biofilm targeting; Antimicrobial release; Bone infection treatment

References

  • [1] Campoccia D., Montanaro L., Arciola CR., The significance of infection related to orthopedic devices and issues of antibiotic resistance, Biomaterials, 2006, 27, 2331-2339.CrossrefGoogle Scholar

  • [2] Lew D.P., Waldvogel F.A., Osteomyelitis, Lancet, 364 (2004) 369-379.Google Scholar

  • [3] Vila J., Soriano A., Mensa J., Molecular basis of microbial adherence to prosthetic materials. Role of biofilms in prosthesisassociated infection, Enferm. Infecc. Microbiol. Clin., 26, 2008, 48-54.Google Scholar

  • [4] Arciola C.R., Campoccia D., Speziale P., Montanaro L., Costerton J.W., Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilmresistant materials, Biomaterials, 33, 2012, 5967-5982.CrossrefGoogle Scholar

  • [5] Götz F., Staphylococcus and biofilms, Mol. Microbiol., 43, 2002, 1367-1378.PubMedCrossrefGoogle Scholar

  • [6] Harris L., Foster S.J., Richards R.G., An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review, Eur. Cell Mater., 2002, 4, 39-60.Google Scholar

  • [7] Haidar R., Der Boghossian A., Atiyeh B., Duration of postsurgical antibiotics in chronic osteomyelitis: empiric or evidence-based?, Int. J. Infect. Dis., 14, 2010, 752-758.CrossrefGoogle Scholar

  • [8] Huh A.J., Kwon Y.J., “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era, J. Control. Release, 2012, 156, 128-145.Google Scholar

  • [9] Dvir T., Timko B.P., Kohane D.S., Langer R., Nanotechnological strategies forengineering complex tissues, Nat. Nanotechnol., 6, 2011, 13-22.CrossrefGoogle Scholar

  • [10] Vallet-Regí M., Balas F., Arcos D., Mesoporousmaterials for drug delivery, Angew. Chem. Int. Ed., 2007, 46, 7548-7558.Google Scholar

  • [11] Baeza A., Colilla M., Vallet-Regi M., Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery, Expert Opin. Drug Deliv., 2015, 12, 319-337.Google Scholar

  • [12] Wang Y., Zhao Q., Han N., Bai L., Li J., Liu L., Che E., Hu L., Zhang Q., Jiang T., Wang S., Mesoporous silica nanoparticles in drug delivery and biomedical applications, Nanomedicine, 2015, 11, 313-327.Web of ScienceGoogle Scholar

  • [13] Martínez-Carmona M., Lozano D., Colilla M., Vallet-Regí M., Selective topotecan delivery to cancer cells by targeted pHsensitive mesoporous silica nanoparticles, RSC Adv., 6, 2016, 50923-50932.Google Scholar

  • [14] Lei Q., Qiu W.-X., Hu J.-J., Cao P.-X., Zhu C.-H., Cheng H., Zhang X.-Z., Multifunctional mesoporous silica nanoparticles with thermal-responsive gatekeeper for NIR light-triggered chemo/photothermal-therapy, Small, 12, 2016, 4286-4298.CrossrefWeb of ScienceGoogle Scholar

  • [15] Li X., Zhao W., Liu X., Chen K., Zhu S., Shi P., Chen Y., Shi J., Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers, Acta Biomater., 30, 2016, 378-387.Web of ScienceGoogle Scholar

  • [16] Castillo R.R., Colilla M., Vallet-Regí M., Advances in mesoporous silica-based nanocarriers for co-delivery and combination therapy against cancer, Expert Opin. Drug Deliv., 14, 2017, 229-243.Google Scholar

  • [17] Martínez-Carmona M., Lozano D., Baeza A., Colilla M., Vallet- Regí M., A novel visible light responsive nanosystem for cancer treatment, Nanoscale, 9, 2017, 15967-15973.Google Scholar

  • [18] Zhao S., Xu M., Cao C., Yu Q., Zhou Y., Liu J., A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin, J.Mater. Chem. B, 5, 2017, 6908-6919.CrossrefWeb of ScienceGoogle Scholar

  • [19] Chen X., Sun H., Hu J., Han X., Liu H., Hu Y., Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery, Colloids Surf. B Biointerfaces, 152, 2017, 77-84.Google Scholar

  • [20] Vallet-Regí M., Rámila A., del Real R.P., Pérez-Pariente J., A new property of MCM-41: Drug delivery system, Chem. Mater., 13, 2001, 308-311.CrossrefGoogle Scholar

  • [21] Lu J., Liong M., Li Z., Zink J.I., Tamanoi F., Biocompatibility, biodistribution, and drug-delivery eflciency of mesoporous silica nanoparticles for cancer therapy in animals,Small, 16, 2010, 1794-1805.CrossrefGoogle Scholar

  • [22] Tang F.Q., Li L.L., Chen D., Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery, Adv. Mater., 24, 2012, 1504-1534.Google Scholar

  • [23] Fu C., Liu T., Li L., Liu H., Chen D., Tang F, The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes, Biomaterials, 34, 2013, 2565-2575.Web of ScienceCrossrefGoogle Scholar

  • [24] Lin Y.-S., Abadeer N., Haynes C.L., Stability of small mesoporous silica nanoparticles in biological media, Chem. Commun., 47, 2011, 532-534.CrossrefWeb of ScienceGoogle Scholar

  • [25] Paris J.L., Colilla M., Izquierdo-Barba I.,Manzano M., Vallet-Regí M., Tuning mesoporous silica dissolution in physiological environments: A review, J. Mater. Sci. 52, 2017, 8761-8771.Google Scholar

  • [26] Rimmelé T., Boselli E, Breilh D., Djabarouti S., Bel J.C., Guyot R., Saux M.C., Allaouchiche B., Diffusion of levofloxacin into bone and synovial tissues, J Antimicrob. Chemother. 53, 2004, 533-535.Google Scholar

  • [27] Grün M., Lauer I., Unger K.K., The synthesis of micrometerand submicrometer-size spheres of ordered mesoporous oxide MCM-41, Adv. Mater., 9, 1997, 254-257.Google Scholar

  • [28] Nieto A., Balas F., Colilla M., Manzano M., Vallet-Regí M., Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage, Microporous Mesoporous Mater., 116, 2008, 4-13.Google Scholar

  • [29] De Juan F., Ruiz-Hitzky E., Selective functionalization of mesoporous silica, Adv. Mater., 12, 2000, 430-432.Google Scholar

  • [30] Zhuravlev L.T., The surface chemistry of amorphous silica. Zhuravlev model, Colloid Surf. A., 173, 2000, 1-38.Google Scholar

  • [31] Brunauer S., Emmett P.H., Teller E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 60, 1938, 309-319.CrossrefGoogle Scholar

  • [32] Cicuéndez M., Izquierdo-Barba I., Portolés I., Vallet-Regí M., Biocompatibility and levofloxacin delivery of mesoporous materials, Eur. J. Pharm. Biopharm., 84, 2013, 115-124.CrossrefGoogle Scholar

  • [33] Ratkowksy D.A., Handbook of Nonlinear Regression Models, M. Dekker, 1990, New York.Google Scholar

  • [34] García-Álvarez R., Izquierdo-Barba I., Vallet-Regí M., 3D scaffoldwith effectivemultidrug sequential release against bacteria biofilm, Acta Biomaterialia 49, 2016, 113-126.Google Scholar

About the article

Received: 2017-10-27

Revised: 2017-12-04

Accepted: 2017-12-16

Published Online: 2018-01-24


Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 1–12, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0001.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
María Vallet-Regí, Blanca González, and Isabel Izquierdo-Barba
International Journal of Molecular Sciences, 2019, Volume 20, Number 15, Page 3806
[2]
Marina Martínez-Carmona, Isabel Izquierdo-Barba, Montserrat Colilla, and María Vallet-Regí
Acta Biomaterialia, 2019, Volume 96, Page 547
[3]
Sushilkumar A. Jadhav, Harshada B. Garud, Aravind H. Patil, Gajanan D. Patil, Chetan R. Patil, Tukaram D. Dongale, and Pramod S. Patil
Colloid and Interface Science Communications, 2019, Volume 30, Page 100181
[4]
Marina Martínez-Carmona, Yurii Gun’ko, and María Vallet-Regí
Pharmaceutics, 2018, Volume 10, Number 4, Page 279
[5]
Noemí Encinas, Mercedes Angulo, Carlos Astorga, Montserrat Colilla, Isabel Izquierdo-Barba, and María Vallet-Regí
Acta Biomaterialia, 2018

Comments (0)

Please log in or register to comment.
Log in