Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

The effect of serum proteins on apatite growth for 45S5 Bioglass and common sol-gel derived glass in SBF

Sen Lin / Julian R. Jones
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/bglass-2018-0002

Abstract

The inhibitive effects of serum proteins on apatite growth was compared between melt-derived 45S5 Bioglass® and sol-gel derived bioactive glass of the 70S30C (70 mol% SiO2, 30 mol% CaO). By using techniques of XRD, TEM and Raman spectroscopy, the transformation of amorphous calcium phosphate to crystalline apatite, and the resulting size and aspect ratio of the crystals, in simulated body fluid (SBF), was seen to decrease in the presence of serum. XRD showed more rapid HA formation on Bioglass particles, compared to that forming on 70S30C particles, however TEM showed similar size and frequency of the needle-like crystals. Phosphate reduction in SBF was similar for Bioglass and 70S30C. Calcium carbonate formation was more likely on the phosphate-free sol-gel glass than on Bioglass.

References

  • [1] Hench, L.L., Splinter, R.J., Allen, W.C. and Greenlee, T.K., Bonding mechanisms at the interface of ceramic prosthetic materials, J Biomed Mater Res Symp, 1971, 2, 117-141CrossrefGoogle Scholar

  • [2] Hench, L.L., Opening paper 2015- Some comments on Bioglass: Four Eras of Discovery and Development, Biomedical Glasses, 2015, 1, 1-11Google Scholar

  • [3] Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L. and Polak, J.M., Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: Implications and applications for bone tissue engineering, Calcified tissue international, 2000, 67, 321-329Google Scholar

  • [4] Jones, J.R., Brauer, D.S., Hupa, L. and Greenspan, D.C., Bioglass and bioactive glasses and their impact on healthcare, Int J Appl Glass Sci, 2016, 7, 423-434Google Scholar

  • [5] Miguez-Pacheco, V., Hench, L.L. and Boccaccini, A.R., Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater, 2015, 13, 1-15Web of ScienceGoogle Scholar

  • [6] Jones, J.R., Review of bioactive glass: From Hench to hybrids, Acta Biomater, 2013, 9, 4457-4486CrossrefGoogle Scholar

  • [7] Kokubo, T., et al., Ca, P-rich layer formed on high-strength bioactive glass-Ceramic A-W, J. Biomed. Mater. Res., 1990, 24, 331-343CrossrefGoogle Scholar

  • [8] Kokubo, T. and Takadama, H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 2907-2915PubMedGoogle Scholar

  • [9] Macon, A.L.B., et al., A unified in vitro evaluation for apatiteforming ability of bioactive glasses and their variants, J. Mater. Sci. - Mater. Med., 2015, 26, 115-115Google Scholar

  • [10] Radin, S., Ducheyne, P., Rothman, B. and Conti, A., The effect of in vitro modeling conditions on the surface reactions of bioactive glass, J. Biomed. Mater. Res., 1997, 37, 363-375Google Scholar

  • [11] Li, R., Clark, A.E. and Hench, L.L., An investigation of bioactive glass powders by sol-gel processing, Journal of Applied Biomaterials, 1991, 2, 231-239CrossrefGoogle Scholar

  • [12] Pereira, M.M., Clark, A.E. and Hench, L.L., Calcium-Phosphate Formation on Sol-Gel-Derived Bioactive Glasses in-Vitro, J. Biomed. Mater. Res., 1994, 28, 693-698CrossrefGoogle Scholar

  • [13] Saravanapavan, P., Jones, J.R., Pryce, R.S. and Hench, L.L., Bioactivity of gel-glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O), J. Biomed. Mater. Res. Part A, 2003, 66A, 110-119CrossrefGoogle Scholar

  • [14] Jones, J.R., Ehrenfried, L.M. and Hench, L.L., Optimising bioactive glass scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 964-973CrossrefGoogle Scholar

  • [15] Poologasundarampillai, G., Lee, P.D., Lam, C., Kourkouta, A.M. and Jones, J.R., Compressive Strength of Bioactive Sol-Gel Glass Foam Scaffolds, Int J Appl Glass Sci, 2016, 7, 229-237Google Scholar

  • [16] Lin, S., Ionescu, C., Pike, K.J., Smith, M.E. and Jones, J.R., Nanostructure evolution and calcium distribution in sol-gel derived bioactive glass, Journal of Materials Chemistry, 2009, 19, 1276- 1282CrossrefWeb of ScienceGoogle Scholar

  • [17] Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T., Solution able to reproduce in vivo surface-structure in bioactive glass-ceramic A-W3, J. Biomed. Mater. Res., 1990, 24, 721- 734CrossrefGoogle Scholar

  • [18] Hench, L.L., Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, 1991, 74, 1487-1510Google Scholar

  • [19] Vallet-Regi, M., Romero, A.M., Ragel, C.V. and LeGeros, R.Z., XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatitelike layer on sol-gel glasses, Journal of BiomedicalMaterials Research, 1999, 44, 416-421Google Scholar

  • [20] Hill, R.G. and Brauer, D.S., Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non- Cryst. Solids, 2011, 357, 3884-3887Google Scholar

  • [21] Nommeots-Nomm, A., et al., Highly degradable porous meltderived bioactive glass foam scaffolds for bone regeneration, Acta Biomater, 2017, 57, 449-461CrossrefGoogle Scholar

  • [22] Lin, S., Van den Bergh, W., Baker, S. and Jones, J.R., Protein interactions with nanoporous sol-gel derived bioactive glasses, Acta Biomater, 2011, 7, 3606-3615CrossrefGoogle Scholar

  • [23] Sepulveda, P., Jones, J.R. and Hench, L.L., Characterization of melt-derived 45S5 and sol-gel-derived 58S bioactive glasses, J. Biomed. Mater. Res., 2001, 58, 734-740Google Scholar

  • [24] Sepulveda, P., Jones, J.R. and Hench, L.L., In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses, J. Biomed. Mater. Res., 2002, 61, 301-311Google Scholar

  • [25] Jones, J.R., Sepulveda, P. and Hench, L.L., Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res., 2001, 58, 720-726Google Scholar

  • [26] Midha, S., van den Bergh,W., Kim, T.B., Lee, P.D., Jones, J.R. and Mitchell, C.A., Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of MineralizedMatrix and Vascular Networks In Vitro, Adv. Healthc. Mater., 2013, 2, 490-499Google Scholar

  • [27] Porter, A.E., Botelho, C.M., Lopes, M.A., Santos, J.D., Best, S.M. and Bonfield, W., Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite <I>in vitro</I> and <I>in vivo</I>, Journal of Biomedical Materials Research Part A, 2004, 69A, 670-679Google Scholar

  • [28] Midha, S., Kim, T.B., van den Bergh,W., Lee, P.D., Jones, J.R. and Mitchell, C.A., Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo, Acta Biomater, 2013, 9, 9169- 9182Google Scholar

  • [29] Sauer, G.R., Zunic, W.B., Durig, J.R. and Wuthier, R.E., Fourier transform raman spectroscopy of synthetic and biological calcium phosphates, Calcified Tissue International, 1994, 54, 414- 420CrossrefGoogle Scholar

  • [30] Notingher, I., et al., Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells, Spectroscopy-an International Journal, 2003, 17, 275-288Google Scholar

  • [31] Yuan, P., He, H.P., Wu, D.Q., Wang, D.Q. and Chen, L.J., Characterization of diatomaceous silica by Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60, 2941-2945CrossrefGoogle Scholar

  • [32] FitzGerald, V., et al., In situ high-energy X-ray diffraction study of a bioactive calciumsilicate foam immersed in simulated body fluid, Journal of Synchrotron Radiation, 2007, 14, 492-499CrossrefGoogle Scholar

About the article

Received: 2017-11-08

Revised: 2017-12-05

Accepted: 2017-12-10

Published Online: 2018-02-02


Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 13–20, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0002.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carlotta Pontremoli, Isabel Izquierdo-Barba, Giorgia Montalbano, María Vallet-Regí, Chiara Vitale-Brovarone, and Sonia Fiorilli
Journal of Colloid and Interface Science, 2019
[2]
Kai Zheng, Martin Kapp, and Aldo R. Boccaccini
Applied Materials Today, 2019, Volume 15, Page 350
[3]
Peipei Lu, Zifeng Ni, Guomei Chen, and Shanhua Qian
Russian Journal of Applied Chemistry, 2018, Volume 91, Number 7, Page 1172

Comments (0)

Please log in or register to comment.
Log in