Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): biological evaluation Versus SBF test

Devis Bellucci
  • Corresponding author
  • Dipartimento di Ingegneria Enzo Ferrari, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberta Salvatori
  • Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Cannio
  • Dipartimento di Ingegneria Enzo Ferrari, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marina Luginina
  • Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberto Orrù
  • Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Selena Montinaro
  • Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alexandre Anesi
  • Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luigi Chiarini
  • Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giacomo Cao
  • Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Cagliari, via Marengo 2, 09123 Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valeria Cannillo
  • Dipartimento di Ingegneria Enzo Ferrari, Unità di Ricerca del Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) - Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-24 | DOI: https://doi.org/10.1515/bglass-2018-0003

Abstract

The biocompatibility of hydroxyapatite (HA), a lab-made bioglass (BGCaMIX) with high crystallization temperature and different HA/BGCaMIX composites, produced by Spark Plasma Sintering (SPS), was tested with respect to murine osteocytes both by direct and indirect tests, in order to also investigate possible cytotoxic effects of the samples’ extracts. Previous investigations demonstrated that the samples’ bioactivity, evaluated in a simulated body fluid solution (SBF), increased with the increasing amount of BGCaMIX in the sample itself. Although none of the samples were cytotoxic, the findings of the biological evaluation did not confirm those arising from the SBF assay. In particular, the results of direct tests did not show an enhanced “biological performance” of materials with higher glass content. This finding may be due to the high release of ions and particulate from the glass phase. On the contrary, the performance of the BGCaMIX alone is better for the indirect tests, based on filtered samples’ extracts. This work further demonstrates that, when considering bioglasses and HA/bioglass composites, the results of the SBF assays should be interpreted with great care, making sure that the results arising from direct contact tests are integrated with those arising fromthe indirect ones.

Keywords: Bioactive glasses; Spark Plasma Sintering; Cytotoxicity Tests

References

  • [1] S.H. Palmer, C.L. Gibbons, N.A. Athanasou. The pathology of bone allograft. J Bone Jt. Surg. Br. 81 (1999) 333-335.CrossrefGoogle Scholar

  • [2] E. Chiariello, M. Cadossi, G. Tedesco, P. Capra, C. Calamelli, A. Shehu, S. Giannini. Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin. Exp. Res. 25 (2013) S101-103.CrossrefGoogle Scholar

  • [3] V. Campana, G. Milano, E. Pagano, M. Barba, C. Cicione, G. Salonna, W. Lattanzi, G. Logroscino. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater. Sci. Mater. Med. 25 (2014) 2445-2461.CrossrefGoogle Scholar

  • [4] S. Samavedi, A.R. Whittington, A.S. Goldstein. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 9 (2013) 8037-8045.CrossrefGoogle Scholar

  • [5] S.V. Dorozhkin. Bioceramics of calcium orthophosphates. Biomaterials 31 (2010) 1465-1485.CrossrefGoogle Scholar

  • [6] U. Ripamonti, L.C. Roden, L.F. Renton. Osteoinductive hydroxyapatite coated titanium implants. Biomaterials 33 (2012) 3813-3823.PubMedCrossrefGoogle Scholar

  • [7] L. Lin, K.L. Chow, Y. Leng. Study of hydroxyapatite osteoinductivity with an osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 89A (2009) 326-335.Google Scholar

  • [8] L. Sun, C.C. Berndt, K.A. Gross, A. Kucuk. Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: a review. J. Biomed. Mater. Res. 58 (2001) 570-592.Google Scholar

  • [9] M.J. Yaszemski, R.G. Payne, W.C. Hayes, R. Langer, A.G. Mikos. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17 175-185.CrossrefGoogle Scholar

  • [10] J.M. Spivak, A. Hasharoni. Use of hydroxyapatite in spine surgery. Eur Spine J. 10 (2001) S197-204.Google Scholar

  • [11] A. Tampieri, G. Celotti, F. Szontagh, E. Landi. Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity. J Mater Sci Mater Med 8 (1997) 29-37.Google Scholar

  • [12] D. Bellucci, A. Sola, V. Cannillo. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications. J. Biomed. Mater. Res. Part A 104A (2016) 1030-1056.CrossrefGoogle Scholar

  • [13] L.L. Hench. Bioceramics: From concept to clinic. J. Am. Ceram. Soc. 74 (1991) 1487-1510.Google Scholar

  • [14] A.A. Gorustovich, J.A. Roether, A.R. Boccaccini. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng. Part B Rev. 16 (2010) 199-207.CrossrefGoogle Scholar

  • [15] Allan, H. Newman, M. Wilson. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials 22 (2001) 1683-1687.CrossrefGoogle Scholar

  • [16] A. Hoppe, N.S. Güldal, A.R. Boccaccini. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32 (2011) 2757-2774.CrossrefGoogle Scholar

  • [17] A.R. Boccaccini, Q. Chen, L. Lefebvre, L. Gremillard, J. Chevalier, Sintering, crystallization and biodegradation behaviour of bioglassr-derived glass-ceramics, Faraday Discuss. 136 (2007) 27-44.Google Scholar

  • [18] O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson, A.R. Boccaccini, Sintering and crystallization of 45S5 bioglassr powder, J. Eur. Ceram. Soc. 29 (2009) 3299-3306.CrossrefGoogle Scholar

  • [19] L. Desogus, A. Cuccu, S. Montinaro, R. Orrù, G. Cao, D. Bellucci, A. Sola, V. Cannillo. Classical Bioglassr and innovative CaOrich bioglass powders processed by Spark Plasma Sintering: a comparative study. J. Eur. Ceram. Soc. 35 (2015) 4277-4285.Google Scholar

  • [20] J.R. Jones. Review of bioactive glass: From Hench to hybrids. Acta Biomater 9 (2013) 4457-4486.CrossrefGoogle Scholar

  • [21] D. Bellucci, A. Sola, V. Cannillo. Low temperature sintering of innovative bioactive glasses. J. Am. Ceram. Soc. 95 (2012) 1313-1319.Google Scholar

  • [22] D. Bellucci, F. Chiellini, G. Ciardelli, M. Gazzarri, P. Gentile, A. Sola, V. Cannillo, Processing and characterization of innovative scaffolds for bone tissue engineering. J.Mater. Sci.Mater. Med. 23 (2012) 1397-1409.CrossrefGoogle Scholar

  • [23] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini. 45S5 Bioglassderived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27 (2006) 2414-2425.CrossrefGoogle Scholar

  • [24] D. Bellucci, A. Sola, A. Anesi, R. Salvatori, L. Chiarini, V. Cannillo. Bioactive glass/hydroxyapatite composites: Mechanical properties and biological evaluation.Mater. Sci. Eng. C 51 (2015) 196-205.Google Scholar

  • [25] D. Bellucci, L. Desogus, S. Montinaro, R. Orrù, G. Cao, V. Cannillo. Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair. J. Eur. Ceram. Soc. 37 (2017) 1723-1733.Google Scholar

  • [26] R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, G. Cao. Consolidation/ synthesis of materials by electric current activated/ assisted sintering. Mater. Sci. Eng. R 63 (2009) 127-287.CrossrefGoogle Scholar

  • [27] S. Grasso, R.K. Chinnam, H. Porwal, A.R. Boccaccini, M.J. Reece. Low temperature spark plasma sintering of 45S5 Bioglassr. J. Non-Cryst. Solids 362 (2013) 25-29.Google Scholar

  • [28] L. Bertolla, I. Dlouhý, P. Tatarko, A. Viani, A. Mahajan, Z. Chlup, M.J. Reece, A.R. Boccaccini. Pressureless spark plasma- sintered Bioglassr 45S5 with enhanced mechanical properties and stress-induced new phase formation. J. Eur. Ceram. Soc. 37 (2017) 2727-2736.Google Scholar

  • [29] A. Cuccu, S. Montinaro, R. Orrù, G. Cao, D. Bellucci, A. Sola, V. Cannillo. Consolidation of different Hydroxyapatite powders by SPS: optimization of the sintering conditions and characterization of the obtained bulk products. Ceram. Intern. 41 (2015) 725-736.Google Scholar

  • [30] D. Bellucci, V. Cannillo, G. Ciardelli, P. Gentile, A. Sola. Potassiumbased bioactive glass for bone tissue engineering. Ceram. Int. 36 (2010) 2449-2453.Google Scholar

  • [31] A. Cattini, L. Łatka, D. Bellucci, G. Bolelli, A. Sola, L. Lusvarghi, L. Pawłowski, V. Cannillo. Suspension plasma sprayed bioactive glass coatings: Effects of processing on microstructure, mechanical properties and in-vitro behaviour. Surf. Coat. Tech. 220 (2013) 52-59.Google Scholar

  • [32] F.L. Matthews, R. Rawlings. Composite Materials: Engineering and Science. Chapman & Hall, Great Britain; 1994. Google Scholar

  • [33] International Standard 10993-5, Biological Evaluation of Medical Devices - Part 5:Tests for Cytotoxicity: In Vitro Methods, 2009.Google Scholar

  • [34] International Standard 10993-12, Biological Evaluation of Medical Devices - Part 12: Sample Preparation and Reference Materials, 2007.Google Scholar

  • [35] N.W. Roehm, G.H. Rodgers, S.M. Hatfield, A.L. Glasebrook. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J. Immunol. Methods 142 (1991) 257-265.Google Scholar

  • [36] M.V. Berridge, P.M. Herst, A.S. Tan. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11 (2005) 127-152.PubMedCrossrefGoogle Scholar

  • [37] D. Bellucci, A. Sola, R. Salvatori, A. Anesi, L. Chiarini, V. Cannillo. Sol-gel derived bioactive glasses with low tendency to crystallize: Synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds.Mater. Sci. Eng. C 43 (2014) 573 - 585.Google Scholar

  • [38] T. Kokubo, H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.CrossrefPubMedGoogle Scholar

  • [39] M. Bohner, J. Lemaitre. Can bioactivity be tested in vitrowith SBF solution? Biomaterials 30 (2009) 2175-2179.CrossrefGoogle Scholar

  • [40] S. Kotani, Y. Fujita, T. Kitsugi, T. Nakamura, T. Yamamuro, C. Ohtsuki, et al. Bone bonding mechanism of beta-tricalcium phosphate. J. Biomed. Mater. Res. 25 (1991) 1303-1315.Google Scholar

  • [41] W.R. Walsh, P.Morberg, Y. Yu, J.L. Yang,W. Haggard, P.C. Sheath, et al. Response of a calcium sulfate bone graft substitute in a confined cancellous defect, Clin. Orthop. 406 (2003) 228-236.Google Scholar

  • [42] F. Theiss, D. Apelt, B. Brand, A. Kutter, K. Zlinszky, M. Bohner, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials 26 (2005) 4383-4394.CrossrefPubMedGoogle Scholar

  • [43] Y. Kato, J.J.Windle, B.A. Koop, G.R.Mundy, L.F. Bonewald. Establishment of an osteocyte-like cell line. MLO-Y4. J. Bone Miner. Res. 12 (1997) 2014-2023.Google Scholar

  • [44] L.F. Bonewald. Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J. Bone Miner. Metab. 17 (1999) 61-65.CrossrefGoogle Scholar

  • [45] G. Fotakis, J.A. Timbrell, In vitro cytotoxicity assays: comparison of LDH, neutral red,MTT and protein assay in hepatoma cell lines following exposure to cadmiumchloride, Toxicol. Lett. 160 (2006) 171-177.Google Scholar

  • [46] R. Fautz, B. Husein, C. Hechenberger, Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: rapid colorimetric viability determination for the unscheduled DNA synthesis test (UDS), Mutat. Res. 253 (1991) 173-179.Google Scholar

  • [47] E. Borenfreund, J.A. Puerner, A simple quantitative procedure using monolayer culture for toxicity assays, J. Tissue Cult. Methods 9 (1984) 7-9.Google Scholar

  • [48] G. Ciapetti, D. Granchi, E. Verri, L. Savarino, D. Cavedagna, A. Pizzoferrato. Application of a combination of neutral red and amido black staining for rapid, reliable cytotoxicity testing of biomaterials. Biomaterials 17 (1996) 1259-1264.CrossrefPubMedGoogle Scholar

  • [49] Weyermann, D. Lochmann, A. Zimmer. A practical note on the use of cytotoxicity assays. Int. J. Pharm. 20 (2005) 369-76.Google Scholar

  • [50] L.J. McGaw, E.E. Elgorashi, J.N. Eloff. Cytotoxicity of African Medicinal Plants Against Normal Animal and Human Cells. (2014) Toxicological Survey of African Medicinal Plants, 181-233. Google Scholar

  • [51] A. Kroll, M.H. Pillukat, J. Schnekenburger. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur. J. Pharm. Biopharm. 72 (2009) 370-7.CrossrefGoogle Scholar

  • [52] C.J. Goodwin, S.J. Holt, S. Downes, N.J. Marshall. Microculture tetrazoliumassays: a comparison between two new tetrazolium salts, XTT and MTS. J. Immunol. Methods 179 (1995) 95-103.Google Scholar

  • [53] M.V. Berridge, P.M. Herst, A.S. Tan. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol. Annu. Rev. 11 (2005) 127-152.Google Scholar

  • [54] A.M. Crane, S.K. Bhattacharya. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol. Biol. 1014 (2013) 65-70.Google Scholar

  • [55] I.D. Xynos, M.V. Hukkanen, J.J. Batten, L.D. Buttery, L.L. Hench, J.M. Polak, Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation In vitro: implications and applications for bone tissue engineering, Calcif. Tissue Int. 67 (2000) 321-329.Google Scholar

About the article

Received: 2017-11-21

Revised: 2017-12-01

Accepted: 2017-12-10

Published Online: 2018-01-24


Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 21–31, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0003.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anesi, Generali, Sandoni, Pozzi, and Grande
International Journal of Molecular Sciences, 2019, Volume 20, Number 19, Page 4925
[2]
Gigliola Lusvardi, Francesca Sgarbi Stabellini, and Roberta Salvatori
Materials, 2019, Volume 12, Number 19, Page 3267
[3]
Devis Bellucci, Roberta Salvatori, Alexandre Anesi, Luigi Chiarini, and Valeria Cannillo
Materials Science and Engineering: C, 2018
[4]

Comments (0)

Please log in or register to comment.
Log in