Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Investigating the Effect of Glass Ion Release on the Cytocompatibility, Antibacterial Eflcacy and Antioxidant Activity of Y2O3 / CeO2 doped SiO2-SrO-Na2O glasses

L. M. Placek / T. J. Keenan / A. Coughlan / A. W. Wren
Published Online: 2018-02-02 | DOI: https://doi.org/10.1515/bglass-2018-0004


The effect on ion release and cytocompatibility of Yttrium (Y) and Cerium (Ce) are investigated when substituted for Sodium (Na) in a 0.52SiO2-0.24SrO-0.24-Na2OMOglass series (where MO= Y2O3 or CeO2). Glass leaching was evaluated through pH measurements and Inductive Coupled Plasma-Optical Emission Spectrometry (ICP-OES) analysiswhere the extract pH increased during incubation (11.2 - 12.5). Ion release of Silicon (Si), Na and Strontium (Sr) from the Con glass was at higher than that of glasses containing Y or Ce, and reached a limit after 1 day. Ion release from Y and Ce containing glasses reached a maximum of 1800 μg/mL, 1800 μg/mL, and 10 μg/mL for Si, Na, and Sr, respectively. Release of Y and Cewas below the ICP- OES detection limit <0.1 μg/mL. Cell viability of both L929 fibroblasts and MC3T3 osteoblasts decreased for Con, LY, and LCe extracts; HY extracts did not significantly decrease cell viability while YCe and HCe saw concentrationdependent viability decrease (20%, 33% extract concentrations). Bacterial studies saw Con and LCe eliminating >75% of bacteria at a 9% extract concentration. Antioxidant capacity (mechanism for neuroprotection) was evaluated using the ABTS assay. All glasses had inherent radical oxygen species (ROS) scavenging capability with Con reaching 9.5 mMTE.

Keywords : Bioactive Glass; Cytocompatibility; ABTS assay


  • [1] Cao W., Hench L.L., Bioactive materials, Ceram. Int., 1996, 22(19), 439-507.Google Scholar

  • [2] Oliveira J.M., Correia R.N., Fernandes M.H., Effects of Si speciation on the in vitro bioactivity of glasses, Biomat., 2002, 23(2), 371-9.PubMedGoogle Scholar

  • [3] Peitl O., Dutra Zanotto E., Hench L.L., Highly bioactive P2O5-Na2O-CaO-SiO2 glass- ceramics, J. Non-Cryst. Sol., 2001, 292(1-3), 115-26.Google Scholar

  • [4] Hoppe A., Güldal N.S., Boccaccini A.R., A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomat., 2011, 32(11), 2757-74.Google Scholar

  • [5] Zhang X.F., Coughlan A., O’Shea H., Towler M.R., Kehoe S., Boyd D., Experimental composite guidance conduits for peripheral nerve repair: An evaluation of ion release, Mat. Sci. Eng: C., 2012, 32(6), 1654-1663.Google Scholar

  • [6] Zhang X.F., Kehoe S., Adhi S.K., Ajithkumar T.G., Moane S., O’Shea H., Boyd D., Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si-Na-Ca-Zn-Ce glasses: Potential components for nerve guidance conduits, Mat. Sci. Eng: C., 2011, 31(3), 669-676.Google Scholar

  • [7] Zhang X.F., O’Shea H., Kehoe S., Boyd D., Time-dependent evaluation of mechanical properties and in vitro cytocompatibility of experimental composite-based nerve guidance conduits, J. Mec. Beh. Biomed. Mat., 2011, 4(7), 1266-1274.Google Scholar

  • [8] Jurkić L.M., Cepanec I., Pavelić S.K., Pavelić K., Biological and therapeutic effects of ortho- silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy, Nutr. Metab., 2013, 10(2), 1-12.Google Scholar

  • [9] Reynolds R.M., Padfield P.L., Seckl J.R., Disorders of sodiumbalance, Brit. Med. J., 2006, 332(7543), 702-5.Google Scholar

  • [10] Blaustein M.P., Lederer W.J., Sodium/Calcium exchange: Its physiological implications, Physiol. Rev., 1999, 79(3), 763-854.Google Scholar

  • [11] Schubert D., Dargusch R., Raitano J., Chan S-W., Cerium and yttrium oxide nanoparticles are neuroprotective, Biochem. Biophys. Res. Com., 2006, 342(1), 86-91.Google Scholar

  • [12] Pors Nielsen S., The biological role of strontium, Bone, 2004, 35(3), 583-8.Google Scholar

  • [13] O’Donnell M.D., Hill R.G., Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration, Acta Biomater, 2010, 6(7), 2382- 5.CrossrefGoogle Scholar

  • [14] O’Donnell M.D., Candarlioglu P.L., Miller C.A., Gentleman E., Stevens M.M., Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, J. Mat. Chem., 2010, 20(40), 8934-41.Google Scholar

  • [15] Choi D.W., Calcium and excitotoxic neuronal injury, Ann. NY Acad. Sci., 1994, 747(1), 162- 71.Google Scholar

  • [16] Arundine M., Tymianski M., Molecular mechanisms of calciumdependent neurodegeneration in excitotoxicity, Cell. Calcium., 2003, 34(4-5), 325-337.CrossrefGoogle Scholar

  • [17] Lai T.W., Zhang S., Wang Y.T., Excitotoxicity and stroke: Identifying novel targets for neuroprotection, Prog. Neurobio., 2014, 115, 157-188.Google Scholar

  • [18] Mehta A., Prabhakar M., Kumar P., Deshmukh R., Sharma P.L., Excitotoxicity: Bridge to various triggers in neurodegenerative disorders, Eur. J. Pharma., 2013, 698(1-3), 6-18.Google Scholar

  • [19] Leonelli C., Lusvardi G., Malavasi G., Menabue L., Tonelli M., Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity, J. Non-Cry. Sol., 2003, 316(2-3), 198-216.Google Scholar

  • [20] Cacaina D., Ylanen H., Hupa M., Simon S., Study of yttrium containing bioactive glasses behaviour in simulated body fluid, J. Mat. Sci. Mat. Med., 2006, 17(8), 709-16.Google Scholar

  • [21] Das M., Patil S., Bhargava N., Kang J-F., Riedel L.M., Seal S., Hickman J.J., Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons, Biomat, 2007, 28(10), 1918-25.Google Scholar

  • [22] Ben-Arfa B.A.E., Diopside-calcium pyrophosphate bioglasses doped with some additives, Department of Ceramics and Glass Engineering, University of Aveiro, University of Aveiro, 2011, p. 56.Google Scholar

  • [23] Blinzinger K., Kreutzberg G., Displacement of synaptic terminals from regenerating motoneurons by microglial cells, Zeitschrift fur Zellforschung und mikroskopische Anatomie, 1968 85(2), 145-57.Google Scholar

  • [24] Midha R., Emerging techniques for nerve repair: nerve transfers and nerve guidance tubes, Clin. Neur., 2006, 53185-90.Google Scholar

  • [25] Wolf J.A., Stys P.K., Lusardi T., Meaney D., Smith D.H., Traumatic axonal injury induces calciuminflux modulated by tetrodotoxinsensitive sodium channels, J. Neurosci., 2001, 21(6), 1923-30.Google Scholar

  • [26] LoPachin R.M., Lehning E.J., Mechanism of calcium entry during axon injury and degeneration, Toxicol. Appl. Pharm., 1997, 143(2), 233-44.Google Scholar

  • [27] Jeans L.A., Gilchrist T., Healy D., Peripheral nerve repair by means of a flexible biodegradable glass fibre wrap: A comparisonwith microsurgical epineurial repair, J. Plast. Reconstr. Aes., 2007, 60(12), 1302-8.Google Scholar

  • [28] Bunting S., Di Silvio L., Deb S., Hall S., Bioresorbable glass fibres facilitate peripheral nerve regeneration, J. Hand. Surg., 2005, 30B(3), 242-7. Google Scholar

  • [29] Ferguson T.A., Son Y.J., Extrinsic and intrinsic determinants of nerve regeneration, J. Tiss. Eng., 2011, 2(1).Google Scholar

  • [30] Marquardt L.M., Day D., Sakiyama-Elbert S.E., Harkins A.B., Effects of borate-based bioactive glass on neuron viability and neurite extension, J. Biomed. Mat. Res. A., 2014, 102(8), 2767-75.Google Scholar

  • [31] Miguez-Pacheco V., Hench L.L., Boccaccini A.R., Bioactive glasses beyond bone and teeth: Emerging applications in contact with soft tissues, Acta Biomater., 2015, 13(0), 1-15.Google Scholar

  • [32] Zeng Y., Xiong M., Yu H., He N., Wang Z., Liu Z., Han H., Chen S., Clinical effect of methylprednisolone sodium succinate and mouse nerve growth factor for injection in treating acute spinal cord injury and cauda equina injury, Chin. J. Rep. Rec. Sur., 2010, 24(10), 1208-11.Google Scholar

  • [33] Wang H.B.,Mullins M.E., Cregg J.M., McCarthy C.W., Gilbert R.J., Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration, Acta Biomat., 2010, 6(8), 2970-8.Google Scholar

  • [34] Placek L.M., Keenan T.J., Laflr F., Coughlan A., Wren A.W., Characterization of Y2O3 and CeO2 doped SiO2-SrO-Na2O bioactive glasses, Biomed. Glasses., 2015 1(1).Google Scholar

  • [35] Placek L.M., Keenan T.J., Laflr F., Coughlan A., Wren A.W., Bioactivity of Y2O3 and CeO2 doped SiO2-SrO-Na2O Bioactive Glasses, J. Biomat. App., 2016, 31(2), 165-180. Google Scholar

  • [36] Cerruti M., Greenspan D., Powers K., Effect of pH and ionic strength on the reactivity of Bioglassr 45S5, Biomat, 2005, 26(14), 1665-74. Google Scholar

  • [37] Xiao Y., Lasaga A.C., Ab initio quantum mechanical studies of the kinetics and mechanisms of quartz dissolution: OH− catalysis, Geochim. Cosmochim. Ac., 1996, 60(13), 2283-95.CrossrefGoogle Scholar

  • [38] Plettinck S., Chou L., Wollast R., Kinetics and mechanisms of dissolution of silica at room temperature and pressure, Mineral. Mag. A., 1994, 58728-9.Google Scholar

  • [39] Dent Glasser L.S., Kataoka N., The chemistry of ‘alkaliaggregate’ reaction, Cem. Con. Res., 1981, 11(1), 1-9.Google Scholar

  • [40] Fleming B.A., Kinetics of reaction between silicic acid and amorphous silica surfaces in NaCl solutions, J. Colloid. Interf. Sci., 1986, 110(1), 40-64.Google Scholar

  • [41] Rothbaum H.P., Rohde A.G., Kinetics of silica polymerization and deposition from dilute solutions between 5 and 180∘C, J. Colloid. Interf. Sci., 1979 71(3), 533-59.Google Scholar

  • [42] Icopini G.A., Brantley S.L., Heaney P.J., Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25∘C, Geochim Cosmochim Ac, 2005 69(2), 293-303.Google Scholar

  • [43] Chan S.H., A review on solubility and polymerization of silica, Geothermics, 1989, 18(1), 49-56.CrossrefGoogle Scholar

  • [44] Mandal R., Guo A.C., Chaudhary K.K., Liu P., Yallou F.S., Dong E., Aziat F., Wishart D.S., Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update, Genome. Med, 2012, 4(4), 38.PubMedCrossrefGoogle Scholar

  • [45] Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomat, 2006, 27(15), 2907-15.Google Scholar

  • [46] Verberckmoes S.C., De Broe M.E., D’Haese P.C., Dosedependent effects of strontium on osteoblast function and mineralization, Kidney Int., 2003, 64(2), 534-43.CrossrefGoogle Scholar

  • [47] Valerio P., Pereira M.M., Goes A.M., Leite M.F., The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production, Biomat, 2004, 25(15), 2941-8.Google Scholar

  • [48] Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG. Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation, J Roy Soc, 2012 9(70), 880-9.Google Scholar

  • [49] Silver I.A., Deas J., Erecińska M., Interactions of bioactive glasseswith osteoblasts in vitro: effects of 45S5 Bioglassr, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability, Biomat, 2001, 22(2), 175-85.Google Scholar

  • [50] Small P., Blankenhorn D., Welty D., Zinser E., Slonczewski J.L., Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH, J. Bacter., 1994, 176(6), 1729-37.Google Scholar

  • [51] Parhad N.M., Rao N.U., Effect of pH on Survival of Escherichia coli, J. Water. Pollut. Control. Fed., 1974, 46(5), 980-6.Google Scholar

  • [52] Baird-Parker A.C., The staphylococci: an introduction, Soc. App. Bacter., 1990, 19, 1S-8S.Google Scholar

  • [53] Whiting R.C., Sackitey S., Calderone S., Morely K., Phillips J.G., Model for the survival of Staphylococcus aureus in non-growth environments, Int. J. Food Microbiol., 1996, 31(1-3), 231- 43. CrossrefGoogle Scholar

  • [54] Halpin-Dohnalek M.I., Marth E.H., Staphylococcus aureus: production of extracellular compounds and behavior in foods : a review, J. Food Protect., 1989, 52(4).Google Scholar

  • [55] Jøssang A., Stange E., A new predictive activity model for aqueous salt solutions, Fluid Phase Equilibr., 2001, 181(1-2), 33-46.Google Scholar

  • [56] Marshall B.J.,Ohye D.F., Christian J.H.B., Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium, Appl. Microbiol., 1971, 21(2), 363-4.PubMedGoogle Scholar

  • [57] Olson E.R., Influence of pH on bacterial gene expression, Mol. Microbio., 1993, 8(1), 5-14.Google Scholar

  • [58] Greenberg S.A., Sinclair D., The polymerization of silicic acid, J. Phys. Chem., 1955, 59(5), 435-40.CrossrefGoogle Scholar

  • [59] Goto K., Effect of pH on polymerization of silicic acid, J. Phys. Chem., 1956, 60(7), 1007-8.Google Scholar

  • [60] Coradin T., Livage J., Effect of some amino acids and peptides on silicic acid polymerization, Coll. Sur. B., 2001, 21(4), 329-36.Google Scholar

  • [61] Christie J.K., Malik J., Tilocca A., Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium, Phys. Chem. Chem. Phys., 2011, 13(39), 17749-55.Google Scholar

About the article

Received: 2017-11-02

Revised: 2017-12-14

Accepted: 2017-12-19

Published Online: 2018-02-02

Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 32–44, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0004.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Agata Łapa, Mark Cresswell, Ian Campbell, Phil Jackson, Wolfgang H. Goldmann, Rainer Detsch, Andrew Parsons, Ifty Ahmed, and Aldo R. Boccaccini
Journal of Materials Chemistry B, 2019
Gigliola Lusvardi, Francesca Sgarbi Stabellini, and Roberta Salvatori
Materials, 2019, Volume 12, Number 19, Page 3267
Mohammad M. Farag, Zainab M. Al-Rashidy, and Manar M. Ahmed
Journal of Materials Science: Materials in Medicine, 2019, Volume 30, Number 2
Gianluca Malavasi, Roberta Salvatori, Alfonso Zambon, Gigliola Lusvardi, Luca Rigamonti, Luigi Chiarini, and Alexandre Anesi
Materials, 2019, Volume 12, Number 4, Page 594

Comments (0)

Please log in or register to comment.
Log in