Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and CaO-containing phosphate glass fibres for bio-applications

Chao Tan
  • International Doctoral Innovation Centre, The University of Nottingham Ningbo China, Ningbo, 315100, China; Ningbo Nottingham New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ifty Ahmed
  • Advanced Materials Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew J. Parsons
  • Composites Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chenkai Zhu
  • Ningbo Nottingham New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, China; Ningbo Nottingham International Academy for the Marine Economy and Technology, The University of Nottingham Ningbo China, Ningbo, 315100, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fernando B. Betanzos
  • Advanced Materials Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chris D. Rudd
  • Ningbo Nottingham New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, China
  • Advanced Materials Research Group, Faculty of Engineering, The University of Nottingham, Nottingham, NG7 2RD, UK
  • Ningbo Nottingham International Academy for the Marine Economy and Technology, The University of Nottingham Ningbo China Ningbo, 315100, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaoling Liu
  • Corresponding author
  • Ningbo Nottingham New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, China; Ningbo Nottingham International Academy for the Marine Economy and Technology, The University of Nottingham Ningbo China, Ningbo, 315100, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-05 | DOI: https://doi.org/10.1515/bglass-2018-0006

Abstract

This paper investigated the preparation of phosphate glass fibres (PGFs) in the following systems: i) 45P2O5-5B2O3-5Na2O-(29-x)CaO-16MgO-(x)Fe2O3 and ii) 45P2O5-5B2O3-5Na2O-24CaO-(21-x)MgO-(x)Fe2O3 (where x = 5, 8 and 11 mol%) for biomedical applications. Continuous fibres of 23 ± 1 μm diameter were prepared via a meltdraw spinning process. Compositions with higher Fe2O3 content and higher MgO/CaO ratio required higher melting temperature and longer heating time to achieve glass melts for fibre pulling. The effects of Fe2O3 addition and annealing treatment on mechanical properties and degradation behaviours were also investigated. Adding Fe2O3 was found to increase the tensile strength from 523 ± 63 (Ca-Fe5) to 680 ± 75 MPa (Ca-Fe11), improve the tensile modulus from72 ± 4 (Ca-Fe5) to 78 ± 3 GPa (Ca-Fe11) and decrease the degradation rate from 4.0 (Mg-Fe5) to 1.9 × 10−6 kg m−2 s−1 (Mg-Fe11). The annealing process reduced the fibre tensile strength by 46% (Ca-Fe5), increased the modulus by 19.6%(Ca-Fe8) and decreased the degradation rate by 89.5% (Mg-Fe11) in comparison to the corresponding as drawn fibres. Additionally, the annealing process also impeded the formation of precipitate shells and revealed coexistence of the precipitation and the pitting corrosion as fibre degradation behaviours.

Keywords : Phosphate glass fibres; iron; mechanical properties; annealing; degradation

References

  • [1] A. J. Parsons, I. Ahmed, P. Haque, B. Fitzpatrick, M. I. K. Niazi, G. S. Walker, et al., Phosphate glass fibre composites for bone repair, J Bionic Eng, vol. 6, pp. 318-323, 2009.Google Scholar

  • [2] I. Ahmed, M. Lewis, I. Olsen, and J. C. Knowles, Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass system, Biomaterials, vol. 25, pp. 491-499, 2004.PubMedCrossrefGoogle Scholar

  • [3] E. A. Abou Neel, W. Chrzanowski, and J. C. Knowles, Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses, Acta Biomater, vol. 4, pp. 523-34, May 2008.CrossrefGoogle Scholar

  • [4] E. A. Abou Neel and J. C. Knowles, Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications, J Mater Sci Mater Med, vol. 19, pp. 377-86, Jan 2008.CrossrefGoogle Scholar

  • [5] D. S. Brauer, C. Russel, S. Vogt, J. Weisser, and M. Schnabelrauch, Fabrication and in vitro characterization of porous biodegradable composites based on phosphate glasses and oligolactide-containing polymer networks, J Biomed Mater Res A, vol. 80, pp. 410-20, Feb 2007.CrossrefGoogle Scholar

  • [6] Z. Mohammadi, A. S. Mesgar, and F. Rasouli-Disfani, Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers, J Mech Behav Biomed Mater, vol. 61, pp. 590-9, Aug 2016.CrossrefPubMedGoogle Scholar

  • [7] R. M. Felfel, I. Ahmed, A. J. Parsons, G. Palmer, V. Sottile, and C. D. Rudd, Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods, Mater Sci Eng C Mater Biol Appl, vol. 33, pp. 1914-24, May 1 2013.Google Scholar

  • [8] I. Ahmed, I. A. Jones, A. J. Parsons, J. Bernard, J. Farmer, C. A. Scotchford, et al., Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture, J Mater Sci-Mater M, vol. 22, pp. 1825-1834, 2011.Google Scholar

  • [9] N. Sharmin, A. J. Parsons, C. D. Rudd, and I. Ahmed, Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibreswith fixed 40, 45 and 50 mol% P2O5, J Biomater Appl, vol. 29, pp. 639-53, Nov 2014.Google Scholar

  • [10] D. S. Brauer, Phosphate glasses, in Bio-glasses: an introduction, J. R. Jones and A. G. Clare, Eds., ed UK: JohnWiley and Sons, Ltd., 2012, pp. 45-64.Google Scholar

  • [11] X. Liu, D. M. Grant, G. Palmer, A. J. Parsons, C. D. Rudd, and I. Ahmed,Magnesiumcoated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites, J Biomed Mater Res B Appl Biomater, vol. 103, pp. 1424-32, Oct 2015.Google Scholar

  • [12] I. Ahmed, M. Lewis, I. Olsen, and J. C. Knowles, Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5-CaO-Na2O glass fibre system, Biomaterials, vol. 25, pp. 501-507, 2004.CrossrefGoogle Scholar

  • [13] N. Sharmin, M. S. Hasan, A. J. Parsons, D. Furniss, C. A. Scotchford, I. Ahmed, et al., Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphatebased glasses, Biomed Res Int, vol. 2013, p. 902427, 2013.Google Scholar

  • [14] D. Carta, D. Qiu, P. Guerry, I. Ahmed, E. A. Abou Neel, J. C. Knowles, et al., The effect of composition on the structure of sodiumborophosphate glasses, J Non Cryst Solids, vol. 354, pp. 3671-3677, 2008.Google Scholar

  • [15] D. Qiu, P. Guerry, I. Ahmed, D. M. Pickup, D. Carta, J. C. Knowles, et al., A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses, Mater Chem Phys, vol. 111, pp. 455-462, 2008.Google Scholar

  • [16] A. Saranti, I. Koutselas, and M. A. Karakassides, Bioactive glasses in the system CaO-B2O3-P2O5: Preparation, structural study and in vitro evaluation, J Non Cryst Solids, vol. 352, pp. 390-398, 2006.Google Scholar

  • [17] C. Tan, I. Ahmed, A. J. Parsons, N. Sharmin, C. Zhu, J. Liu, et al., Structural, thermal and dissolution properties of MgO- and CaOcontaining borophosphate glasses: effect of Fe2O3 addition, J Mater Sci, vol. 52, pp. 7489-7502, 2017.CrossrefGoogle Scholar

  • [18] M. Navarro, M.-P. Ginebra, J. Clément, M. Salvador, A. Gloria, and J. A. Planell, Physicochemical degradation of titaniastabilized soluble phosphate glasses for medical applications, J Am Ceram Soc, vol. 86, pp. 1345-1352, 2003.CrossrefGoogle Scholar

  • [19] K. Dey, N. Sharmin, R. A. Khan, S. Nahar, A. J. Parsons, and C. D. Rudd, Effect of iron phosphate glass on the physico-mechanical properties of jute fabric-reinforced polypropylene-based composites, J Thermoplast Compos, vol. 24, pp. 695-711, 2011.CrossrefGoogle Scholar

  • [20] S. Cozien-Cazuc, A. J. Parsons, G. S.Walker, I. A. Jones, and C. D. Rudd, Real-time dissolution of P40Na20Ca16Mg24 phosphate glass fibers, J Non Cryst Solids, vol. 355, pp. 2514-2521, 2009.Google Scholar

  • [21] R. A. Khan, A. J. Parsons, I. A. Jones, G. S. Walker, and C. D. Rudd, Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials, Polym-Plast Technol, vol. 49, pp. 1265-1274, 2010.Google Scholar

  • [22] P. Haque, I. Ahmed, A. Parsons, R. Felfel, G. Walker, and C. Rudd, Degradation properties and microstructural analysis of 40P2O5-24MgO-16CaO-16Na2O-4Fe2O3 phosphate glass fibres, J Non Cryst Solids, vol. 375, pp. 99-109, 2013.Google Scholar

  • [23] I. Ahmed, A. Parsons, A. Jones, G. Walker, C. Scotchford, and C. Rudd, Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses, J Biomater Appl, vol. 24, pp. 555-75, Feb 2010.CrossrefGoogle Scholar

  • [24] M. Navarro, M.-P. Ginebra, and J. A. Planell, Cellular response to calcium phosphate glasses with controlled solubility, J Biomed Mater Res A., vol. 67, pp. 1009-1015, 2003.Google Scholar

  • [25] M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses, Biomaterials, vol. 19, pp. 2277-2284, 1998.CrossrefGoogle Scholar

  • [26] V. Salih, K. Franks, M. James, G. W. Hastings, J. C. Knowles, and I.Olsen, Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses, J Mater Sci-Mater M, vol. 11, pp. 615-620, 2000.Google Scholar

  • [27] A. Hoppe, N. S. Guldal, and A. R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, vol. 32, pp. 2757-74, Apr 2011.CrossrefGoogle Scholar

  • [28] D. S. Brauer, C. Russel, W. Li, and S. Habelitz, Effect of degradation rates of resorbable phosphate invert glasses on in vitro osteoblast proliferation, J Biomed Mater Res A, vol. 77, pp. 213-9, May 2006.Google Scholar

  • [29] C. Albon, D. Muresan, R. E. Vandenberghe, and S. Simon, Iron environment in calcium-soda-phosphate glasses and vitroceramics, J Non Cryst Solids, vol. 354, pp. 4603-4608, 2008.Google Scholar

  • [30] M. Elisa, R. Iordanescu, B. A. Sava, G. Aldica, V. Kuncser, C. Valsangiacom, et al., Optical and structural investigations on ironcontaining phosphate glasses, J Mater Sci vol. 46, pp. 1563-1570, 2010.Google Scholar

  • [31] B. C. Sales and L. A. Boatner, Physical and chemical characteristics of lead-iron phosphate nuclear waste glasses, J Non Cryst Solids, vol. 79, pp. 83-116, 1986.Google Scholar

  • [32] X. Yu, D. E. Day, G. J. Long, and R. K. Brow, Properties and structure of sodium-iron phosphate glasses, J Non Cryst Solids, vol. 215, pp. 21-31, 1997.Google Scholar

  • [33] R. Stefan and M. Karabulut, Structural properties of iron containing calcium-magnesium borophosphate glasses, J Mol Struct, vol. 1071, pp. 45-51, 2014.Google Scholar

  • [34] N. Sharmin, C. D. Rudd, A. J. Parsons, and I. Ahmed, Structure, viscosity and fibre drawing properties of phosphate-based glasses: effect of boron and iron oxide addition, JMater Sci, vol. 51, pp. 7523-7535, 2016.Google Scholar

  • [35] P. Bergo, S. T. Reis, W. M. Pontuschka, J. M. Prison, and C. C. Motta, Dielectric properties and structural features of bariumiron phosphate glasses, J Non Cryst Solids, vol. 336, pp. 159-164, 2004.Google Scholar

  • [36] D. A.Magdas,O. Cozar, V. Chis, I. Ardelean, and N. Vedeanu, The structural dual role of Fe2O3 in some lead-phosphate glasses, Vib Spectrosc, vol. 48, pp. 251-254, 2008.CrossrefGoogle Scholar

  • [37] M. Lu, F. Wang, Q. Liao, K. Chen, J. Qin, and S. Pan, FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses, J Mol Struct, vol. 1081, pp. 187-192, 2015.Google Scholar

  • [38] B. Raguenet, G. Tricot, G. Silly, M. Ribes, and A. Pradel, The mixed glass former effect in twin-roller quenched lithium borophosphate glasses, Solid State Ionics, vol. 208, pp. 25-30, 2012.Google Scholar

  • [39] U. Hoppe, M. Karabulut, E. Metwalli, R. K. Brow, and P. J’ov’ari, The Fe-O coordination in iron phosphate glasses by XRD with high energy photons, Phys.: Condens.Matter, vol. 15, pp. 6143-6153, 2003.Google Scholar

  • [40] T. Okura, T. Miyachi, and H. Monma, Properties and vibrational spectra of magnesium phosphate glasses for nuclear waste immobilization, J Eur Ceram Soc, vol. 26, pp. 831-836, 2006.CrossrefGoogle Scholar

  • [41] P. Y. Shih and T. S. Chin, Preparation of lead-free phosphate glasses with low Tg and excellent chemical durability, J Mater Sci Lett, vol. 20, pp. 1811 - 1813, 2001.CrossrefGoogle Scholar

  • [42] D. N. Singh, Periodic Table and Periodicity of Properties in Basic Concept of Inorganic Chemistry D. N. Singh, Ed., ed India: Pearson Education 2009, pp. 1-32.Google Scholar

  • [43] R. M. Felfel, I. Ahmed, A. J. Parsons, P. Haque, G. S. Walker, and C. D. Rudd, Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates, J Biomater Appl, vol. 26, pp. 765-789, Mar 2012.CrossrefPubMedGoogle Scholar

  • [44] N. Han, I. Ahmed, A. J. Parsons, L. Harper, C. A. Scotchford, B. E. Scammell, et al., Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates, J Biomater Appl, vol. 27, pp. 990-1002, May 2013.Google Scholar

  • [45] F. Barrera Betanzos, M. Gimeno-Fabra, J. Segal, D. Grant, and I. Ahmed, Cyclic pressure on compression-moulded bioresorbable phosphate glass fibre reinforced composites, Materials & Design, vol. 100, pp. 141-150, 2016.Google Scholar

  • [46] Q. Fu, E. Saiz, M. N. Rahaman, and A. P. Tomsia, Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives,Mater Sci Eng CMater Biol Appl, vol. 31, pp. 1245-1256, Oct 10 2011.Google Scholar

  • [47] R. M. Felfel, I. Ahmed, A. J. Parsons, L. T. Harper, and C. D. Rudd, Initial mechanical properties of phosphate-glass fibrereinforced rods for use as resorbable intramedullary nails, Journal of Materials Science, vol. 47, pp. 4884-4894, 2012.Google Scholar

  • [48] M. R. Bosisio, M. Talmant, W. Skalli, P. Laugier, and D. Mitton, Apparent Young’s modulus of human radius using inverse finiteelement method, J Biomech, vol. 40, pp. 2022-8, 2007.Google Scholar

  • [49] I. Ahmed, A. J. Parsons, G. Palmer, J. C. Knowles, G. S. Walker, and C. D. Rudd, Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite, Acta Biomater, vol. 4, pp. 1307-14, Sep 2008.Google Scholar

  • [50] P. Haque, A. J. Parsons, I. A. Barker, I. Ahmed, D. J. Irvine, G. S. Walker, et al., Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents, Compos Sci Technol, vol. 70, pp. 1854-1860, 2010.CrossrefGoogle Scholar

  • [51] N. Sharmin and C. D. Rudd, Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review, JMater Sci, vol. 52, pp. 8733-8760, 2017.Google Scholar

  • [52] R. K. Brow, Review: the structure of simple phosphate glasses, Journal of Non-Crystalline Solids, vol. 263&264, pp. 1-28, 2000.Google Scholar

  • [53] V. Pukh, L. Baikova, and T. Pesina, Structural strength of glass, in the Second Conference of the European Society of Glass Science and Technology, Stazione Sperimentale del Vetro, Venice, Italy, 1993, pp. 339-344.Google Scholar

  • [54] V. P. Pukh, L. G. Baikova, M. F. Kireenko, L. V. Tikhonova, T. P. Kazannikova, and A. B. Sinani, Atomic structure and strength of inorganic glasses, Physics of the Solid State, vol. 47, pp. 876-881, 2005.Google Scholar

  • [55] M. S. Hasan, Phosphate glass fibre reinforced composite for bone repair applications: Investigation of interfacial integrity improvements via chemical treatments, Doctor of Philosophy, The University of Nottingham, 2012.Google Scholar

  • [56] L. G. Baikova, Y. K. Fedorov, V. P. Pukh, T. I. Pesina, T. P. Kazannikova, L. V. Tikhonova, et al., Effect of cation field strength on the mechanical properties of R2O-Al2O3-P2O5 glasses, Glass Phys Chem+, vol. 19, pp. 380-383, 1993.Google Scholar

  • [57] I. Ahmed, C. A. Collins, M. P. Lewis, I. Olsen, and J. C. Knowles, Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering, Biomaterials, vol. 25, pp. 3223-32, Jul 2004.CrossrefGoogle Scholar

  • [58] M. S. Hasan, I. Ahmed, A. J. Parsons, G. S. Walker, and C. A. Scotchford,Material characterisation and cytocompatibility assessment of quinternary phosphate glasses, J Mater Sci-Mater M, vol. 23, pp. 2531-41, Oct 2012.CrossrefGoogle Scholar

  • [59] L.Ma, R. K. Brow, and M. E. Schlesinger, Dissolution behavior of Na 2 O-FeO-Fe 2O3 -P 2O5 glasses, Journal of Non-Crystalline Solids, vol. 463, pp. 90-101, 2017.Google Scholar

  • [60] C. R. Kurkjian, Mechanical properties of phosphate glasses, J Non Cryst Solids, vol. 263-264, pp. 207-212, 2000.Google Scholar

  • [61] S. T. Lin, S. L. Krebs, S. Kadiyala, K. W. Leong, W. C. LaCourse, and B. Kumar, Development of bioabsorbable glass fibres, Biomaterials, vol. 15, pp. 1057-1061, 1994.Google Scholar

  • [62] J. B. Murgatroyd, The delayed elastic effect in glass fibres and the constitution of glass in fibre form, Journal of the Society of Glass Technology, vol. 32, pp. 291-300, 1948.Google Scholar

  • [63] R. J. Kirkpatrick and R. K. Brow, Nuclear magnetic resonance investigation of the structures of phosphate and phosphatecontaining glasses: a review, Solid State Nucl Mag, vol. 5, pp. 9-21, 1995.CrossrefGoogle Scholar

  • [64] W. Vogel and W. Höland, The development of bioglass ceramics for medical application, Angewandte Chemie International Edition, vol. 26, pp. 527-544, 1987.CrossrefGoogle Scholar

  • [65] F. Döhler, A. Mandlule, L. v. Wüllen, M. Friedrich, and D. S. Brauer, 31P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses, J. Mater. Chem. B, vol. 3, pp. 1125-1134, 2015.Google Scholar

  • [66] B. C. Bunker, G. W. Arnold, and J. A. Wilder, Phosphate glass dissolution in aqueous solutions, J Non Cryst Solids, vol. 64, pp. 291-316, 1984/05/01/ 1984.CrossrefGoogle Scholar

  • [67] H. Gao, T. Tan, and D. Wang, Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium, J Control Release, vol. 96, pp. 29-36, Apr 16 2004.Google Scholar

  • [68] E. El-Meliegy, M. M. Farag, and J. C. Knowles, Dissolution and drug release profiles of phosphate glasses doped with high valency oxides, J Mater Sci Mater Med, vol. 27, p. 108, Jun 2016.PubMedCrossrefGoogle Scholar

  • [69] S. E. Ruiz Hernandez, R. I. Ainsworth, and N. H. de Leeuw,Molecular dynamics simulations of bio-active phosphate-based glass surfaces, Journal of Non-Crystalline Solids, vol. 451, pp. 131-137, 2016.Google Scholar

  • [70] J. Clément, J. M. Manero, and J. A. Planell, Analysis of the structural changes of a phosphate glass during its dissolution in simulated body fluid,Materials Science:Materials Medicine vol. 10, pp. 729-732, 1999.Google Scholar

  • [71] I. Ahmed, J. J. Blaker, A. Bismarck, A. R. Boccaccini, M. P. Lewis, S. N. Nazhat, et al., Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres, Acta Biomater, vol. 1, pp. 553-63, Sep 2005.Google Scholar

  • [72] S. Cozien-Cazuc, A. J. Parsons, G. S. Walker, I. A. Jones, and C. D. Rudd, Effects of aqueous aging on the mechanical properties of P40Na20Ca16Mg24 phosphate glass fibres, J Mater Sci, vol. 43, pp. 4834-4839, 2008.Google Scholar

  • [73] M. G. Mesko and D. E. Day, Immobilization of spent nuclear fuel in iron phosphate glass, J Nucl Mater, vol. 273, pp. 27-36, 1999.Google Scholar

  • [74] H. Stockhorst and R. Brückner, Structure sensitive measurements on phosphate glass fibers, J Non Cryst Solids, vol. 85, pp. 105-126, 1986.Google Scholar

  • [75] J. B. Murgatroyd, The strength of glass fibres, Part 1: elastic properties, Journal of the Society of Glass Technology, vol. 28, pp. 368-387, 1944.Google Scholar

  • [76] J. Choueka, J. L. Charvet, H. Alexander, Y. H. Oh, G. Joseph, N. C. Blumenthal, et al., Effect of annealing temperature on the degradation of reinforcing fibers for absorbable implants, Journal of Biomedical Materials Research, vol. 29, pp. 1309-1315, 1995.Google Scholar

  • [77] A. G. Metcalfe and G. K. Schmitz, Mechanisms of stress corrosion in E-glass filaments, Glass Technology, vol. 13, pp. 5-16, 1972.Google Scholar

  • [78] G. K. Schmitz and A. G. Metcalfe, Stress corrosion of E-glass fibers, Industrial & Engineering Chemistry Product Research and Development, vol. 5, pp. 1-8, 1966.Google Scholar

  • [79] S. Inaba, H. Hosono, and S. Ito, Entropic shrinkage of an oxide glass, Nature Materials, vol. 14, pp. 312-317, 2015.CrossrefPubMedGoogle Scholar

  • [80] A. J. Parsons, I. Ahmed, J. Yang, S. Cozien-Cazuc, and C. D. Rudd, Heat-treatment of phosphate glass fibres and its effect on composite property retention presented at the 16th international conference on composite materials Kyoto, 2007.Google Scholar

  • [81] E. Pirhonen, H. Niiranen, T. Niemela, M. Brink, and P. Tormala, Manufacturing, mechanical characterization, and in vitro performance of bioactive glass 13-93 fibers, J BiomedMater Res B Appl Biomater, vol. 77, pp. 227-33, May 2006.Google Scholar

  • [82] F. Muñoz, O. Pritula, J. Sedláček, and C. Rüssel, A study on the anisotropy of phosphate glass fibres, Glass Technol-Part A, vol. 49, pp. 47-52, 2008.Google Scholar

About the article

Received: 2017-11-07

Revised: 2018-03-07

Accepted: 2018-04-21

Published Online: 2018-07-05


Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 57–71, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0006.

Export Citation

© 2018 Xiaoling Liu et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Oumaima Jamal Eddine, Hasna Wakrim, Mehdi El Bouchti, Aicha Boukhriss, Omar Cherkaoui, Hassan Hannache, and Said Gmouh
Journal of Alloys and Compounds, 2019, Page 152808
[2]
Andrew J. Parsons, Reda M. Felfel, Matthew D. Wadge, and David M. Grant
International Journal of Applied Glass Science, 2019
[3]
Nezha Saloumi, Mehdi El Bouchti, Youssef Tamraoui, Bouchaib Manoun, Hassan Hannache, and Omar Cherkaoui
Journal of Non-Crystalline Solids, 2019, Volume 522, Page 119587
[4]
Agata Lapa, Mark Cresswell, Phil Jackson, and Aldo R. Boccaccini
Advances in Applied Ceramics, 2019, Page 1
[5]
Chao Tan, Chris Rudd, Andrew Parsons, Nusrat Sharmin, Junxiao Zhang, Wanru Chen, and Ifty Ahmed
Fibers, 2018, Volume 6, Number 4, Page 97

Comments (0)

Please log in or register to comment.
Log in