Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I

Firas Hmood
  • Corresponding author
  • Department for ceramics and construction materials, College of materials engineering, University of Babylon, 964 Babylon, Iraq
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oliver Goerke
  • Chair of Advanced Ceramic Materials / Fachgebiet Keramische Werkstoffe, Department for Materials Science and Technology, Technische Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franziska Schmidt
  • Chair of Advanced Ceramic Materials / Fachgebiet Keramische Werkstoffe, Department for Materials Science and Technology, Technische Universität Berlin, Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-05 | DOI: https://doi.org/10.1515/bglass-2018-0008


Bioactive glass is an emerging research area for many scientists around the world. A large processing window combined with high bioactivity are anticipated features for such kind of glass. In fact, both features depend upon the glass network connectivity (NC). A good bioactive glass has a network that ensures a balance between the processing properties and the bioactivity. This study aims at developing a new chemical composition based on that of ICIE16 bioactive glass. Therefore, new compositions were investigated by introducing boron oxide and magnesium oxide with different molar ratios ranging from 1 to 3 mol% each to the composition of ICIE16; In addition,Na2O was partially replaced by P2O5. Melt-quenching technique was followed to prepare the bioactive glass. So far, the results have shown that the processing window increases with the proposed modifications. BP3 and BM2 bioactive glasses show the maximum processing window of a round 250 K. The relationship between the chemical composition and the processing window as well as the corresponding bioactivity will be hereafter discussed.

Keywords: Bioactive glass; processing window; ion exchange; dissolution; hydroxyapatite


  • [1] Ylänen H.O., Bioactive glasses, 1sted, Woodhead Publishing, 2011.Google Scholar

  • [2] Hench L.L., The story of Bioglassr, J. Mater. Sci.: Mater. Med., 2006, 17, 967-978.CrossrefGoogle Scholar

  • [3] Oonishi H., Hench L.L., Wilson J., Sugihara F., Tsuji E., Kushitani S., et al., Comparative bone growth behavior in granules of bioceramic materials of various size, J. Biomed. Mater. Res., 1999, 44, 31-43.CrossrefGoogle Scholar

  • [4] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglassderived glass-ceramic scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 2414-2425.CrossrefWeb of ScienceGoogle Scholar

  • [5] Henning L.M., Zavareh S., Kamm P.H., Höner M., Fischer H., Banhart J., et al., Manufacturing and characterization of highly porous bioactive glass composite scaffolds using unidirectional freeze casting, Adv. Eng. Mater., 2017,1700129.Web of ScienceGoogle Scholar

  • [6] Lefebvre L, Gremillard L, Chevalier J, Zenati R., Bernache- Assolant D, Sintering Behavior of 45S5 Bioglassr, Acta Biomaterialia, 2008, 4, 1894-1903.CrossrefGoogle Scholar

  • [7] Massera J., Fagerlund S., Hupa L., Hupa M., Crystallization Mechanism of the Bioactive Glasses, 45S5 and S53P4, J. Am. Ceram. Soc., 2012, 95, 607-613.Google Scholar

  • [8] Filho O. P., LaTorre G.P., Hench L. L., Effect of crystallization on apatite-layer formation of bioactive glass 45S5, Biomed. Mater. Res.,1996, 30, 509-514.Google Scholar

  • [9] Brink M., The influence of alkali and alkaline earths on the working range for bioactive glasses, J. Bio.Material. Med. Res., 1997, 36, 109-117.Google Scholar

  • [10] Blochberger M., Hupa L., Brauer D.S., Influence of zinc andmagnesium substitution on ion release from bioglass 45S5 at physiological and acidic pH, Biomed. Glasses, 2015, 1, 93-107.Google Scholar

  • [11] Chen X., Karpukhina N., Brauer D.S., Hill R.G., Novel highly degradable chloride containing bioactive glasses, Biomed. Glasses, 2015, 1, 108 - 118.Google Scholar

  • [12] Kaufmann E.A., Ducheyne P., Shapiro I.M., Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation, J. Biomed. Mater. Res., 2000, 52, 783-796.CrossrefGoogle Scholar

  • [13] Wang C.K., Ju C.P., Chem Lin J.H., Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite, Mater. Chem. Phys., 1998, 53, 138-149.Google Scholar

  • [14] Bellucci D., Anesi A., Salvatori R., Chiarini L., Cannillo V., A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair, Mater. Sci. Eng. C, 2017, 79, 286-295.Web of ScienceGoogle Scholar

  • [15] Brauer D.S., Bioactive glasses-structure and properties, Angewandte Chemie (International ed. in English), 2015, 54, 4160-81.Google Scholar

  • [16] Groh D., Döhler F., Brauer D.S., Bioactive glasses with improved processing. Part 1. thermal properties, ion release and apatite formation, Acta Biomaterialia, 2014,10, 4465-4473.Web of ScienceGoogle Scholar

  • [17] Watts S.J., Hill R.G., O’Donnell M.D., Law R.V., Influence of magnesia on the structure and properties of bioactive glass, J. Non- Cryst. Solids, 2010, 356, 517-524.Google Scholar

  • [18] Hill R., An alternative view of the degradation of bioglass, J. Mater. Sci. Lett., 1996, 15, 1122-1125.CrossrefGoogle Scholar

  • [19] Andersson Ö.H., Liu G., Karlsson K.H., Niemi L., Miettinen J., Juhanoja J., In vivo behavior of glasses in the SiO2-Na2O-P2O3- Al2O3-B2O3 systems, J. Mater. Medi., 1990, 1, 219-227.Google Scholar

  • [20] Andersson Ö.H., Glass transition temperature of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system, J.Mater. Sci.:Mater. Med., 1992, 3, 326-328.CrossrefGoogle Scholar

  • [21] Oliveria J.M., Correia R.N., Fernandes M.H., Rocha J., Influence of the CaO/MgO ratio on the structure of phase separated glasses: a solid state 29Si and 31P MAS NMR study, J. Non-Cryst. Solids, 2000, 265, 221-229.Google Scholar

  • [22] Wang X., Fagerlund S., Massera J., Södergård B., Hupa L., Do properties of bioactive glasses exhibit mixed alkali behavior? J. Mater. Sci., 2017, 52, 8986-8997.Web of ScienceCrossrefGoogle Scholar

  • [23] Tylkowski M., Brauer D.S., Mixed alkali effects in Bioglassr 45S5, J. Non-Cryst. Solids, 2013, 376, 175-181.Google Scholar

  • [24] Doehler F., Groh D., Chiba S., Bierlich J., Kobelke J., Brauer D.S., Bioactive glasses with improved processing. Part 2. Viscosity and fiber drawing, J. Non-Cryst. Solids, 2016, 432 Part A, 130-136.Google Scholar

  • [25] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R. G., Structural analysis of bioactive glasses, J. Non-Cryst. Solids, 2005, 315, 173-183.Google Scholar

  • [26] Varshneya A.K., Fundamentals of inorganic glasses, New York, Academic press, INC, 1994.Google Scholar

  • [27] Durand L.A., Vargas G.E., Romero N.M., Vera-Mesones R., Porto- Lopes J.M., Boccaccini A.R., et al., Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass, J. Mater. Chem. B, DOI: 10.1039/C4TB01840K.CrossrefWeb of ScienceGoogle Scholar

  • [28] Kamitsos E.I., Karakassides M.A., Chryssikos G.D., Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 1987, 91, 1073-1079.CrossrefGoogle Scholar

  • [29] Agathopoulos S., Tulyaganov D.U., Ventura J.M.G., Kannan S., Saranti A., Karakassides M.A., et al., Structural analysis and devitrification of glasses based on the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives, J. Non-Cryst. Solids, 2006, 352, 322-328.Google Scholar

  • [30] Jastrzębski W, Sitarz M, Rokita M, Bulat K., Infrared spectroscopy of different phosphates structures, Spectrochim Acta Part A, 2011, 79, 722-727.Google Scholar

  • [31] Hench L.L., Bioceramics, J. Am. Ceram. Soc., 1998, 81, 1705-1728.Google Scholar

  • [32] Maçon A.L., Kim T.B., Valliant E.M., Goetschius K., Brow R.K., Day D.E., et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med., 2015, 26, 115.Web of ScienceGoogle Scholar

  • [33] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res., 2001, A58, 720-726.CrossrefGoogle Scholar

  • [34] Silva A.M.B., Queiroz C.M., Agathopoulos S., Correia R.N., Fernandes M.H.V., Oliveira J.M., Structure of SiO2-MgO-Na2O glasses by FTIR, Raman and 29Si MAS NMR, J. Mol. Struct., 2011, 986, 16-21.Google Scholar

  • [35] Wu Z.Y., Hill R.G., Yue S., Nightingale D., Lee P.D., Jones J.R., Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique, Acta Biomater, 2011, 7, 1807-1816.PubMedCrossrefWeb of ScienceGoogle Scholar

  • [36] Dey P., Pal S.k., Sarkar R., Effect of Alumina Addition on 45S5 Bioglass, Trans. Ind. Ceram Soc., 2014, 73, 105-109.Google Scholar

  • [37] Harada T., In H., Takebe H., Morinaga K., Effect of B2O3 addition on the thermal stability of bariumphosphate glasses for optical fiber devices, J. Am. Ceram. Soc., 2004, 87, 408-411.Google Scholar

  • [38] Sharmin N., Hasan M.S., Parsons A.J., Furniss D., Scotchford C.A., Ahmed I., et al., Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphatebased glasses, Biomed. Res. Int., 2013, 2013, 1-12.Google Scholar

  • [39] Massera J., Claireaux C., Lehtonen T., Tuominen J., Hupa L., Hupa M., Control of the thermal properties of slow bioresorbable glasses by boron addition, J. Non-Cryst. Solids, 2011, 357, 3623-3630.Google Scholar

  • [40] Ohura K., Nakamura T., Yamamuro T., Ebisawa Y., Kokubo T., Kotoura Y., et al., Bioactivity of CaO.SiO2 glasses added with different various ions, J Mater Sci Mater Med., 1992, 3, 95-100.CrossrefGoogle Scholar

  • [41] Ebisawa Y., Kokubo T., Ohura K., Yamamuro T., Bioactivity of CaO.SiO2-based glasses: in vitro evaluation, J. Mater. Sci. Mater. Med., 1990, 1, 239-244.Google Scholar

  • [42] Vogel W., Glass chemistry, 2nded, Springer-Verlag, 1994.Google Scholar

  • [43] El-Meliegy E., van Noort R., Glasses and glass ceramics for medical applications, New York, Springer Science+Business Media, LLC, 2012.Google Scholar

  • [44] LepryW.C., Nazhat S.N., Highly bioactive Sol-Gel-derived borate glasses, Chem. Mater., 2015, 27, 4821-4831.Web of ScienceGoogle Scholar

  • [45] Zhang X.H., Yue Y.L., Wu H.T., Effects of cation field strength on structure and properties of boroaluminosilicate glasses,Mater. Res. Innovations, 2013, 17, 212-217.Google Scholar

  • [46] Dietrich E., Oudadesse H., Lucas-Girot A., Le Gal Y., Jeanne S., Cathelineau G., Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications, Appl. Surf. Sci., 2008, 255, 391-395.Google Scholar

About the article

Received: 2018-02-07

Revised: 2018-07-30

Accepted: 2018-09-15

Published Online: 2018-10-05

Published in Print: 2016-08-01

Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 82–94, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0008.

Export Citation

© by Firas Hmood et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in