Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access October 5, 2018

Chemical Composition Refining of Bioactive Glass for Better Processing Features, Part I

  • Firas Hmood EMAIL logo , Oliver Goerke and Franziska Schmidt
From the journal Biomedical Glasses

Abstract

Bioactive glass is an emerging research area for many scientists around the world. A large processing window combined with high bioactivity are anticipated features for such kind of glass. In fact, both features depend upon the glass network connectivity (NC). A good bioactive glass has a network that ensures a balance between the processing properties and the bioactivity. This study aims at developing a new chemical composition based on that of ICIE16 bioactive glass. Therefore, new compositions were investigated by introducing boron oxide and magnesium oxide with different molar ratios ranging from 1 to 3 mol% each to the composition of ICIE16; In addition,Na2O was partially replaced by P2O5. Melt-quenching technique was followed to prepare the bioactive glass. So far, the results have shown that the processing window increases with the proposed modifications. BP3 and BM2 bioactive glasses show the maximum processing window of a round 250 K. The relationship between the chemical composition and the processing window as well as the corresponding bioactivity will be hereafter discussed.

References

[1] Ylänen H.O., Bioactive glasses, 1sted, Woodhead Publishing, 2011.10.1533/9780857093318Search in Google Scholar

[2] Hench L.L., The story of Bioglassr, J. Mater. Sci.: Mater. Med., 2006, 17, 967-978.10.1007/s10856-006-0432-zSearch in Google Scholar

[3] Oonishi H., Hench L.L., Wilson J., Sugihara F., Tsuji E., Kushitani S., et al., Comparative bone growth behavior in granules of bioceramic materials of various size, J. Biomed. Mater. Res., 1999, 44, 31-43.10.1002/(SICI)1097-4636(199901)44:1<31::AID-JBM4>3.0.CO;2-9Search in Google Scholar

[4] Chen Q.Z., Thompson I.D., Boccaccini A.R., 45S5 Bioglassderived glass-ceramic scaffolds for bone tissue engineering, Biomaterials, 2006, 27, 2414-2425.10.1016/j.biomaterials.2005.11.025Search in Google Scholar

[5] Henning L.M., Zavareh S., Kamm P.H., Höner M., Fischer H., Banhart J., et al., Manufacturing and characterization of highly porous bioactive glass composite scaffolds using unidirectional freeze casting, Adv. Eng. Mater., 2017,1700129.10.1002/adem.201700129Search in Google Scholar

[6] Lefebvre L, Gremillard L, Chevalier J, Zenati R., Bernache- Assolant D, Sintering Behavior of 45S5 Bioglassr, Acta Biomaterialia, 2008, 4, 1894-1903.10.1016/j.actbio.2008.05.019Search in Google Scholar

[7] Massera J., Fagerlund S., Hupa L., Hupa M., Crystallization Mechanism of the Bioactive Glasses, 45S5 and S53P4, J. Am. Ceram. Soc., 2012, 95, 607-613.10.1111/j.1551-2916.2011.05012.xSearch in Google Scholar

[8] Filho O. P., LaTorre G.P., Hench L. L., Effect of crystallization on apatite-layer formation of bioactive glass 45S5, Biomed. Mater. Res.,1996, 30, 509-514.10.1002/(SICI)1097-4636(199604)30:4<509::AID-JBM9>3.0.CO;2-TSearch in Google Scholar

[9] Brink M., The influence of alkali and alkaline earths on the working range for bioactive glasses, J. Bio.Material. Med. Res., 1997, 36, 109-117.10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-DSearch in Google Scholar

[10] Blochberger M., Hupa L., Brauer D.S., Influence of zinc andmagnesium substitution on ion release from bioglass 45S5 at physiological and acidic pH, Biomed. Glasses, 2015, 1, 93-107.10.1515/bglass-2015-0009Search in Google Scholar

[11] Chen X., Karpukhina N., Brauer D.S., Hill R.G., Novel highly degradable chloride containing bioactive glasses, Biomed. Glasses, 2015, 1, 108 - 118.10.1515/bglass-2015-0010Search in Google Scholar

[12] Kaufmann E.A., Ducheyne P., Shapiro I.M., Effect of varying physical properties of porous, surface modified bioactive glass 45S5 on osteoblast proliferation and maturation, J. Biomed. Mater. Res., 2000, 52, 783-796.10.1002/1097-4636(20001215)52:4<783::AID-JBM24>3.0.CO;2-JSearch in Google Scholar

[13] Wang C.K., Ju C.P., Chem Lin J.H., Effect of doped bioactive glass on structure and properties of sintered hydroxyapatite, Mater. Chem. Phys., 1998, 53, 138-149.10.1016/S0254-0584(97)02074-9Search in Google Scholar

[14] Bellucci D., Anesi A., Salvatori R., Chiarini L., Cannillo V., A comparative in vivo evaluation of bioactive glasses and bioactive glass-based composites for bone tissue repair, Mater. Sci. Eng. C, 2017, 79, 286-295.10.1016/j.msec.2017.05.062Search in Google Scholar

[15] Brauer D.S., Bioactive glasses-structure and properties, Angewandte Chemie (International ed. in English), 2015, 54, 4160-81.10.1002/anie.201405310Search in Google Scholar

[16] Groh D., Döhler F., Brauer D.S., Bioactive glasses with improved processing. Part 1. thermal properties, ion release and apatite formation, Acta Biomaterialia, 2014,10, 4465-4473.10.1016/j.actbio.2014.05.019Search in Google Scholar

[17] Watts S.J., Hill R.G., O’Donnell M.D., Law R.V., Influence of magnesia on the structure and properties of bioactive glass, J. Non- Cryst. Solids, 2010, 356, 517-524.10.1016/j.jnoncrysol.2009.04.074Search in Google Scholar

[18] Hill R., An alternative view of the degradation of bioglass, J. Mater. Sci. Lett., 1996, 15, 1122-1125.10.1007/BF00539955Search in Google Scholar

[19] Andersson Ö.H., Liu G., Karlsson K.H., Niemi L., Miettinen J., Juhanoja J., In vivo behavior of glasses in the SiO2-Na2O-P2O3- Al2O3-B2O3 systems, J. Mater. Medi., 1990, 1, 219-227.10.1007/BF00701080Search in Google Scholar

[20] Andersson Ö.H., Glass transition temperature of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system, J.Mater. Sci.:Mater. Med., 1992, 3, 326-328.10.1007/BF00705363Search in Google Scholar

[21] Oliveria J.M., Correia R.N., Fernandes M.H., Rocha J., Influence of the CaO/MgO ratio on the structure of phase separated glasses: a solid state 29Si and 31P MAS NMR study, J. Non-Cryst. Solids, 2000, 265, 221-229.10.1016/S0022-3093(99)00957-6Search in Google Scholar

[22] Wang X., Fagerlund S., Massera J., Södergård B., Hupa L., Do properties of bioactive glasses exhibit mixed alkali behavior? J. Mater. Sci., 2017, 52, 8986-8997.10.1007/s10853-017-0915-ySearch in Google Scholar

[23] Tylkowski M., Brauer D.S., Mixed alkali effects in Bioglassr 45S5, J. Non-Cryst. Solids, 2013, 376, 175-181.10.1016/j.jnoncrysol.2013.05.039Search in Google Scholar

[24] Doehler F., Groh D., Chiba S., Bierlich J., Kobelke J., Brauer D.S., Bioactive glasses with improved processing. Part 2. Viscosity and fiber drawing, J. Non-Cryst. Solids, 2016, 432 Part A, 130-136.10.1016/j.jnoncrysol.2015.03.009Search in Google Scholar

[25] Elgayar I., Aliev A.E., Boccaccini A.R., Hill R. G., Structural analysis of bioactive glasses, J. Non-Cryst. Solids, 2005, 315, 173-183.10.1016/j.jnoncrysol.2004.07.067Search in Google Scholar

[26] Varshneya A.K., Fundamentals of inorganic glasses, New York, Academic press, INC, 1994.10.1016/B978-0-08-057150-8.50025-2Search in Google Scholar

[27] Durand L.A., Vargas G.E., Romero N.M., Vera-Mesones R., Porto- Lopes J.M., Boccaccini A.R., et al., Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass, J. Mater. Chem. B, DOI: 10.1039/C4TB01840K.10.1039/C4TB01840Search in Google Scholar

[28] Kamitsos E.I., Karakassides M.A., Chryssikos G.D., Vibrational spectra of magnesium-sodium-borate glasses. 2. Raman and mid-infrared investigation of the network structure, J. Phys. Chem., 1987, 91, 1073-1079.10.1021/j100289a014Search in Google Scholar

[29] Agathopoulos S., Tulyaganov D.U., Ventura J.M.G., Kannan S., Saranti A., Karakassides M.A., et al., Structural analysis and devitrification of glasses based on the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives, J. Non-Cryst. Solids, 2006, 352, 322-328.10.1016/j.jnoncrysol.2005.12.003Search in Google Scholar

[30] Jastrzębski W, Sitarz M, Rokita M, Bulat K., Infrared spectroscopy of different phosphates structures, Spectrochim Acta Part A, 2011, 79, 722-727.10.1016/j.saa.2010.08.044Search in Google Scholar PubMed

[31] Hench L.L., Bioceramics, J. Am. Ceram. Soc., 1998, 81, 1705-1728.10.1111/j.1151-2916.1998.tb02540.xSearch in Google Scholar

[32] Maçon A.L., Kim T.B., Valliant E.M., Goetschius K., Brow R.K., Day D.E., et al., A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med., 2015, 26, 115.10.1007/s10856-015-5403-9Search in Google Scholar PubMed

[33] Jones J.R., Sepulveda P., Hench L.L., Dose-dependent behavior of bioactive glass dissolution, J. Biomed. Mater. Res., 2001, A58, 720-726.10.1002/jbm.10053Search in Google Scholar PubMed

[34] Silva A.M.B., Queiroz C.M., Agathopoulos S., Correia R.N., Fernandes M.H.V., Oliveira J.M., Structure of SiO2-MgO-Na2O glasses by FTIR, Raman and 29Si MAS NMR, J. Mol. Struct., 2011, 986, 16-21.10.1016/j.molstruc.2010.11.023Search in Google Scholar

[35] Wu Z.Y., Hill R.G., Yue S., Nightingale D., Lee P.D., Jones J.R., Melt-derived bioactive glass scaffolds produced by a gel-cast foaming technique, Acta Biomater, 2011, 7, 1807-1816.10.1016/j.actbio.2010.11.041Search in Google Scholar PubMed

[36] Dey P., Pal S.k., Sarkar R., Effect of Alumina Addition on 45S5 Bioglass, Trans. Ind. Ceram Soc., 2014, 73, 105-109.10.1080/0371750X.2014.922423Search in Google Scholar

[37] Harada T., In H., Takebe H., Morinaga K., Effect of B2O3 addition on the thermal stability of bariumphosphate glasses for optical fiber devices, J. Am. Ceram. Soc., 2004, 87, 408-411.10.1111/j.1551-2916.2004.00408.xSearch in Google Scholar

[38] Sharmin N., Hasan M.S., Parsons A.J., Furniss D., Scotchford C.A., Ahmed I., et al., Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphatebased glasses, Biomed. Res. Int., 2013, 2013, 1-12.10.1155/2013/902427Search in Google Scholar PubMed PubMed Central

[39] Massera J., Claireaux C., Lehtonen T., Tuominen J., Hupa L., Hupa M., Control of the thermal properties of slow bioresorbable glasses by boron addition, J. Non-Cryst. Solids, 2011, 357, 3623-3630.10.1016/j.jnoncrysol.2011.06.037Search in Google Scholar

[40] Ohura K., Nakamura T., Yamamuro T., Ebisawa Y., Kokubo T., Kotoura Y., et al., Bioactivity of CaO.SiO2 glasses added with different various ions, J Mater Sci Mater Med., 1992, 3, 95-100.10.1007/BF00705275Search in Google Scholar

[41] Ebisawa Y., Kokubo T., Ohura K., Yamamuro T., Bioactivity of CaO.SiO2-based glasses: in vitro evaluation, J. Mater. Sci. Mater. Med., 1990, 1, 239-244.10.1007/BF00701083Search in Google Scholar

[42] Vogel W., Glass chemistry, 2nded, Springer-Verlag, 1994.10.1007/978-3-642-78723-2Search in Google Scholar

[43] El-Meliegy E., van Noort R., Glasses and glass ceramics for medical applications, New York, Springer Science+Business Media, LLC, 2012.10.1007/978-1-4614-1228-1Search in Google Scholar

[44] LepryW.C., Nazhat S.N., Highly bioactive Sol-Gel-derived borate glasses, Chem. Mater., 2015, 27, 4821-4831.10.1021/acs.chemmater.5b01697Search in Google Scholar

[45] Zhang X.H., Yue Y.L., Wu H.T., Effects of cation field strength on structure and properties of boroaluminosilicate glasses,Mater. Res. Innovations, 2013, 17, 212-217.10.1179/1433075X12Y.0000000051Search in Google Scholar

[46] Dietrich E., Oudadesse H., Lucas-Girot A., Le Gal Y., Jeanne S., Cathelineau G., Effects of Mg and Zn on the surface of doped melt-derived glass for biomaterials applications, Appl. Surf. Sci., 2008, 255, 391-395.10.1016/j.apsusc.2008.06.094Search in Google Scholar

Received: 2018-02-07
Revised: 2018-07-30
Accepted: 2018-09-15
Published Online: 2018-10-05
Published in Print: 2016-08-01

© by Firas Hmood et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/bglass-2018-0008/html
Scroll to top button