Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.

CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
See all formats and pricing
More options …

The Anti-biofilm Activity of Nanometric Zinc doped Bioactive Glass against Putative Periodontal Pathogens: An in vitro Study

Nasrin Esfahanizadeh
  • Department of Periodontics, Islamic Azad University of Tehran, Faculty of Dentistry, Tehran, Iran
  • Dental Implant Research Center, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Reza Nourani
  • Division of Genomics, Systems Biology Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abbas Bahador
  • Dental Implant Research Center, Dental Research Institute, Tehran University of Medical Sciences, Tehran, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nasrin Akhondi / Mostafa Montazeri
  • Corresponding author
  • Department of Periodontics, Islamic Azad University of Tehran, Faculty of Dentistry, Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-11-10 | DOI: https://doi.org/10.1515/bglass-2018-0009


Colonization of periodontal pathogens on the surgical sites is one of the primary reasons for the failure of regenerative periodontal therapies. Bioactive glasses (BGs) owing to their favorable structural and antimicrobial properties have been proposed as promising materials for the reconstruction of periodontal and peri-implant bone defects. This study aimed to investigate the antibiofilm activity of zinc-doped BG (Zn/BG) compared with 45S5 Bioglass® (BG®) on putative periodontal pathogens. In this in vitro experimental study, the nano BG doped with 5-mol% zinc and BG® were synthesized by sol-gel method. Mono-species biofilms of Aggregatibacter actinomycetemcomitans (A. a), Porphyromonas gingivalis (P. g), and Prevotella intermedia (P. i)were prepared separately in a well-containing microplate. After 48 hours of exposure to generated materials at 37°C, the anti-biofilm potential of the samples was studied by measuring the optical density (OD) at 570nm wavelengths with a microplate reader. Two-way ANOVA then analyzed the results. Both Zn/BG and BG® significantly reduced the biofilm formation ability of all examined strains after 48 hours of incubation (P=0.0001). Moreover, the anti-biofilm activity of Zn/BG was significantly stronger than BG® (P=0.0001), which resulted in the formation of a weak biofilm (OD<1) compared with a moderately adhered biofilm observed with BG® (1<OD<2). Zn/BG showed a significant inhibitory effect on the biofilm formation of all examined periodontal pathogens. Given the enhanced regenerative and anti-biofilm properties of this novel biomaterial, further investigations are required for its implementation in clinical situations.

Keywords: Periodontitis; Biomaterial(s); Microbiology; Antimicrobial(s); Periodontal regeneration


  • [1] Rosen P CD, Cochran D, Froum S, McAllister B, Renvert S, Wang HL. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnoses and clinical implications. J Periodontol. 2013;84(4):436-43.Web of ScienceGoogle Scholar

  • [2] Cortelli SC, Cortelli JR, Romeiro RL, Costa FO, Aquino DR, Orzechowski PR, et al. Frequency of periodontal pathogens in equivalent peri-implant and periodontal clinical statuses. Arch Oral Biol. 2013;58(1):67-74.Web of ScienceGoogle Scholar

  • [3] Coraca-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M. Eflcacy of antibacterial bioactive glass S53P4 against S. au reus biofilms grown on titanium discs in vitro. J Orthop Res. 2014;32(1):175-7.CrossrefGoogle Scholar

  • [4] Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114-22.CrossrefGoogle Scholar

  • [5] Crouzet M, Le Senechal C, Brozel VS, Costaglioli P, Barthe C, Bonneu M, et al. Exploring early steps in biofilm formation: setup of an experimental system for molecular studies. BMC Microbiol. 2014;14:253.CrossrefGoogle Scholar

  • [6] Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318-22.Google Scholar

  • [7] Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015;7(4):493-512.Google Scholar

  • [8] Hajishengallis G, Darveau RP, Curtis MA. The keystonepathogen hypothesis. Nat Rev Microbiol. 2012;10(10):717-25.Google Scholar

  • [9] Isogai E, Isogai H, Sawada H, Ito N. Bacterial adherence to gingival epithelial cells of rats with naturally occurring gingivitis. J Periodontol. 1986;57(4):225-30.CrossrefGoogle Scholar

  • [10] Christersson LA, Albini B, Zambon JJ, Wikesjo UM, Genco RJ. Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J Periodontol. 1987;58(8):529-39.Google Scholar

  • [11] Esposito M, Grusovin MG, Worthington HV. Interventions for replacing missing teeth: treatment of peri-implantitis. Aust Dent J. 2007;52(2):157-8.Google Scholar

  • [12] Mombelli A, van Oosten MA, Schurch E, Jr., Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987;2(4):145-51.Google Scholar

  • [13] Heitz-Mayfield L, TonettiMS, Cortellini P, Lang NP, European Research Group on P. Microbial colonization patterns predict the outcomes of surgical treatment of intrabony defects. J Clin Periodontol. 2006;33(1):62-8.Google Scholar

  • [14] Sbordone L, Barone A, Ramaglia L, Ciaglia RN, Iacono VJ. Antimicrobial susceptibility of periodontopathic bacteria associated with failing implants. J Periodontol. 1995;66(1):69-74.Google Scholar

  • [15] ThomasMV, Puleo DA. Infection, inflammation, and bone regeneration: a paradoxical relationship. J Dent Res. 2011;90(9):1052-61.Google Scholar

  • [16] Jones JR. Reprint of: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 2015;23 Suppl:S53-82.Google Scholar

  • [17] Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17(11):967-78.CrossrefGoogle Scholar

  • [18] Abbasi Z BM, Shariat MH, Bagheri R. Bioactive Glasses in Dentistry: A Review. J Dent Biomater. 2015;2(1):1-9.Google Scholar

  • [19] Boccaccini AR, Erol M, Stark W. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos Sci Technol. 2010;70(13):1764-76.Google Scholar

  • [20] Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater. 1991;2(4):231-9.CrossrefGoogle Scholar

  • [21] Wilson J, Low SB. Bioactive ceramics for periodontal treatment: comparative studies in the Patus monkey. J Appl Biomater. 1992;3(2):123-9.CrossrefGoogle Scholar

  • [22] Salehi S, Davis HB, Ferracane JL, Mitchell JC. Sol-gel-derived bioactive glasses demonstrate antimicrobial effects oncommon oral bacteria. Am J Dent. 2015;28(2):111-5.Google Scholar

  • [23] Baino F, Verné E. Glass-based coatings on biomedical implants: a state-of-the-art review. Biomedical Glasses. 2017;3(1):1-17.Google Scholar

  • [24] Fooladi AA, Hosseini HM, Hafezi F, Hosseinnejad F, Nourani MR. Sol-gel-derived bioactive glass containing SiO2-MgO-CaOP2O5 as an antibacterial scaffold. J Biomed Mater Res A. 2013;101(6):1582-7.Google Scholar

  • [25] Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56(3):161-5.CrossrefGoogle Scholar

  • [26] Allan I,Newman H,Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001;22(12):1683-7.Google Scholar

  • [27] Goudouri OM, Kontonasaki E, Lohbauer U, Boccaccini AR. Antibacterial properties of metal and metalloid ions in chronic periodontitis and peri-implantitis therapy. Acta Biomater. 2014;10(8):3795-810.Web of ScienceGoogle Scholar

  • [28] Bellantone M, Williams HD, Hench LL. Broad-Spectrum Bactericidal Activity of Ag2O-Doped Bioactive Glass. Antimicrob Agents Chemother. 2002;46(6):1940-5.Google Scholar

  • [29] Yamamoto O, Sawai J, Sasamoto T. Change in antibacterial characteristics with doping amount of ZnO in MgO-ZnO solid solution. Int J Inorg Mater. 2000;2(5):451-4.CrossrefGoogle Scholar

  • [30] Echezarreta-López MM, Miguel Td, Quintero F, Pou J, Landín M. Fabrication of Zn-Sr-doped laser-spinning glass nanofibers with antibacterial properties. Journal of Biomaterials Applications. 2017;31(6):819-31.CrossrefWeb of ScienceGoogle Scholar

  • [31] Galarraga-Vinueza ME, Passoni B, Benfatti CAM, Mesquita- Guimaraes J, Henriques B, Magini RS, et al. Inhibition of multispecies oral biofilm by bromide doped bioactive glass. J Biomed Mater Res A. 2017;105(7):1994-2003.Google Scholar

  • [32] Liu J, Rawlinson SC, Hill RG, Fortune F. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects. Dent Mater. 2016;32(3):412-22.CrossrefGoogle Scholar

  • [33] Bejarano J, Caviedes P, Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed Mater. 2015;10(2):1-13.Web of ScienceGoogle Scholar

  • [34] Addy M, Richards J, Williams G. Effects of a zinc citrate mouthwash on dental plaque and salivary bacteria. J Clin Periodontol. 1980;7(4):309-15.PubMedCrossrefGoogle Scholar

  • [35] Balasubramanian P, Strobel L, Kesner U, Boccaccini AR. Zinccontaining bioactive glasses for bone regeneration, dental and orthopedic applications. Biomed Glasses. 2015;1(1):51-69.Google Scholar

  • [36] Samira J, Saoudi M, Abdelmajid K, Hassane O, Treq R, Hafed E, et al. Accelerated bone ingrowth by local delivery of Zinc from bioactive glass: oxidative stress status, mechanical property, and microarchitectural characterization in an ovariectomized rat model. Libyan J Med. 2015;10:28572.Web of ScienceGoogle Scholar

  • [37] Amna T, HassanMS, Barakat NA, Pandeya DR, Hong ST, KhilMS, et al. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol. 2012;93(2):743-51.Web of ScienceGoogle Scholar

  • [38] Fox S, Wilkinson TS, Wheatley PS, Xiao B, Morris RE, Sutherland A, et al. NO-loaded Zn(2+)-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. Acta Biomater. 2010;6(4):1515-21.CrossrefWeb of ScienceGoogle Scholar

  • [39] Hafezi F, Hosseinnejad F, Fooladi AA, Mafi SM, Amiri A, Nourani MR. Transplantation of nano-bioglass/gelatin scaffold in a nonautogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med. 2012;23(11):2783-92.Google Scholar

  • [40] Asgari B, Azami M, Amiri A, Imani Fooladi A, Nourani M. Bone scaffold Biomimetics Based on Gelatin Hydrogel Mineralization. Journal of Biomimetics, Biomaterials, and Tissue Engineering. 2013;17:59-69.Google Scholar

  • [41] Chiniforush N, Pourhajibagher M, Parker S, Shahabi S, Bahador A. The in vitro effect of antimicrobial photodynamic therapy with indocyanine green on Enterococcus faecalis: Influence of a washing vs non-washing procedure. Photodiagnosis Photodyn Ther. 2016;16:119-23.Web of ScienceGoogle Scholar

  • [42] Pourhajibagher M, Chiniforush N, Shahabi S, Ghorbanzadeh R, Bahador A. Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagnosis Photodyn Ther. 2016;15:159-66.Web of ScienceGoogle Scholar

  • [43] Pourhajibagher M, Mokhtaran M, Esmaeili D, Bahador A. Assessment of biofilm formation among Acinetobacter baumannii strains isolated from burned patients. Der Pharmcia Lettre. 2016;8(7):225-9.Google Scholar

  • [44] Hench LL, Polak JM. Third-generation biomedicalmaterials. Science. 2002;295(5557):1014-7.Google Scholar

  • [45] Wang YY, Chatzistavrou X, Faulk D, Badylak S, Zheng L, Papagerakis S, et al. Biological and bactericidal properties of Ag-doped bioactive glass in a natural extracellular matrix hydrogel with potential application in dentistry. Eur Cell Mater. 2015;29:342-55.Google Scholar

  • [46] Xu YT, Wu Q, Chen YM, Smales RJ, Shi SY, Wang MT. Antimicrobial effects of a bioactive glass combined with fluoride or triclosan on Streptococcus mutans biofilm. Arch Oral Biol. 2015;60(7):1059-65.Web of ScienceGoogle Scholar

  • [47] Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521-34.CrossrefGoogle Scholar

  • [48] Paunio IK. The effect of certain cations and anions on the alkaline phosphomonoesterase activities in human dental plaque. Acta Odontol Scand. 1970;28(3):399-415.PubMedCrossrefGoogle Scholar

  • [49] Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol. 2011;77(7):2325-31.Web of ScienceGoogle Scholar

About the article

Received: 2018-02-11

Revised: 2018-10-14

Accepted: 2018-10-14

Published Online: 2018-11-10

Published in Print: 2018-11-01

Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 95–107, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0009.

Export Citation

© by Nasrin Esfahanizadeh, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in