Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Glasses

Editor-in-Chief: Boccaccini, Aldo R.


CiteScore 2018: 2.05

SCImago Journal Rank (SJR) 2018: 0.424
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Open Access
Online
ISSN
2299-3932
See all formats and pricing
More options …

Polycaprolactone / bioactive glass hybrid scaffolds for bone regeneration

Cédric Bossard
  • Corresponding author
  • Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, Clermont-Ferrand, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henri Granel
  • Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yohann Wittrant
  • Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, Clermont-Ferrand, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Édouard Jallot / Jonathan Lao / Christophe Vial / Hanna Tiainen
  • Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, Norway
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-05 | DOI: https://doi.org/10.1515/bglass-2018-0010

Abstract

Bioactive glasses (BG) bond to bone and stimulate bone regeneration, but they are brittle. Inorganicorganic hybrids appear as promising bone substitutes since they associate the bone mineral forming ability of BG with the toughness of polymers. Hybrids comprised of polycaprolactone (PCL) and SiO2-CaO BG were produced by sol-gel chemistry and processed into porous scaffolds with controlled pore and interconnection sizes. The obtained scaffolds are highly flexible, meaning that PCL effectively introduces toughness. Apatite formation is observed within 24 hours of immersion in simulated body fluid (SBF) and is not limited to the surface as the entire hybrid progressively changes into bone-like minerals. The degradation rate is suitable for bone regeneration with a 13.2% weight loss after 8 weeks of immersion. Primary osteoblasts cultured in scaffolds demonstrate that the samples are not cytotoxic and provide good cell adhesion. The in vivo study confirms the bioactivity, biocompatibility and suitable degradation rate of the hybrid. A physiological bone made of trabeculae and bone marrow regenerates. The structure and kinetic of bone regeneration was similar to the implanted commercial standard based on bovine bone, demonstrating that this new synthetic PCL-BG hybrid could perform as well as animal-derived bone substitutes.

Keywords: Bioactive glass; Polycaprolactone; Hybrid; Scaffold; Synthetic bone substitute

References

  • [1] Hench, L. L., The story of Bioglassr. J. Mater. Sci.: Mater. Med. 2006, 17 (11), 967-978. DOI: 10.1007/s10856-006-0432-z.CrossrefGoogle Scholar

  • [2] Hench, L. L.; Paschall, H. A., Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 1973, 7 (3), 25-42. DOI: 10.1002/jbm.820070304.CrossrefGoogle Scholar

  • [3] Xynos, I. D.; Edgar, A. J.; Buttery, L. D. K.; Hench, L. L.; Polak, J. M., Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglassr 45S5 dissolution. J. Biomed. Mater. Res. 2001, 55 (2), 151-157. DOI: 10.1002/1097-4636(200105)55:2<151::aidjbm1001 3.0.co;2-d.CrossrefGoogle Scholar

  • [4] McCarthy, I., The physiology of bone blood flow: a review. The Journal of bone and joint surgery. American volume 2006, 88 Suppl 3, 4-9. DOI: 10.2106/jbjs.f.00890.CrossrefGoogle Scholar

  • [5] Ramasamy, S. K.; Kusumbe, A. P.; Schiller, M.; Zeuschner, D.; Bixel, M. G.; Milia, C.; Gamrekelashvili, J.; Limbourg, A.; Medvinsky, A.; Santoro, M. M.; Limbourg, F. P.; Adams, R. H., Blood flow controls bone vascular function and osteogenesis. Nat. Commun. 2016, 7, 13601. DOI: 10.1038/ncomms13601, https://www.nature.com/articles/ncomms13601#supplementaryinformation.CrossrefGoogle Scholar

  • [6] Fu, Q.; Saiz, E.; Rahaman, M. N.; Tomsia, A. P., Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Materials Science and Engineering: C 2011, 31 (7), 1245-1256. DOI: http://dx.doi.org/10.1016/j.msec.2011.04.022.CrossrefGoogle Scholar

  • [7] Jones, J. R., Review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013, 9 (1), 4457-4486. DOI: http://dx.doi.org/10.1016/j.actbio.2012.08.023.CrossrefGoogle Scholar

  • [8] Mahony, O.; Tsigkou, O.; Ionescu, C.; Minelli, C.; Ling, L.; Hanly, R.; Smith, M. E.; Stevens, M. M.; Jones, J. R., Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv. Funct. Mater. 2010, 20 (22), 3835-3845. DOI: 10.1002/adfm.201000838.Google Scholar

  • [9] Maeno, S.; Niki, Y.; Matsumoto, H.; Morioka, H.; Yatabe, T.; Funayama, A.; Toyama, Y.; Taguchi, T.; Tanaka, J., The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 2005, 26 (23), 4847-4855. DOI: http://dx.doi.org/10.1016/j.biomaterials.2005.01.006.CrossrefGoogle Scholar

  • [10] Yu, B.; Turdean-Ionescu, C. A.; Martin, R. A.; Newport, R. J.; Hanna, J. V.; Smith, M. E.; Jones, J. R., Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. Langmuir 2012, 28 (50), 17465-17476. DOI: 10.1021/la303768b.Google Scholar

  • [11] Poologasundarampillai, G.; Yu, B.; Jones, J. R.; Kasuga, T., Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter 2011, 7 (21), 10241-10251. DOI: 10.1039/C1SM06171B.CrossrefGoogle Scholar

  • [12] Poologasundarampillai, G.; Yu, B.; Tsigkou, O.; Wang, D.; Romer, F.; Bhakhri, V.; Giuliani, F.; Stevens, M. M.; McPhail, D. S.; Smith, M. E.; Hanna, J. V.; Jones, J. R., PGA/silica hybrids with calcium incorporated in the silica network by use of a calcium alkoxide precursor. Chemistry (Weinheim an Der Bergstrasse, Germany) 2014, 20 (26), 8149-8160. DOI: 10.1002/chem.201304013.CrossrefGoogle Scholar

  • [13] Mahony, O.; Yue, S.; Turdean-Ionescu, C.; Hanna, J. V.; Smith, M. E.; Lee, P. D.; Jones, J. R., Silica-gelatin hybrids for tissue regeneration: inter-relationships between the process variables. J. Sol-Gel Sci. Technol. 2013, 69 (2), 288-298. DOI: 10.1007/s10971-013-3214-3.CrossrefGoogle Scholar

  • [14] Connell, L. S.; Romer, F.; Suarez, M.; Valliant, E. M.; Zhang, Z.; Lee, P. D.; Smith, M. E.; Hanna, J. V.; Jones, J. R., Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. J. Mater. Chem. B 2014, 2 (6), 668-680. DOI: 10.1039/c3tb21507e.CrossrefGoogle Scholar

  • [15] Ding, Y.; Roether, J. A.; Boccaccini, A. R.; Schubert, D. W., Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ecaprolactone)/ silica hybrid fibermats with and without calcium addition. Eur. Polym. J. 2014, 55, 222-234. DOI: http://dx.doi.org/10.1016/j.eurpolymj.2014.03.020.CrossrefGoogle Scholar

  • [16] Silva, A. R. P. d.; Macedo, T. L.; Coletta, D. J.; Feldman, S.; Pereira, M. d. M., Synthesis, characterization and cytotoxicity of Chitosan/Polyvinyl Alcohol/Bioactive Glass hybrid scaffolds obtained by lyophilization. Matéria (Rio de Janeiro) 2016, 21, 964-973.Google Scholar

  • [17] Allo, B. A.; Rizkalla, A. S.; Mequanint, K., Synthesis and electrospinning of polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process. Langmuir 2010, 26 (23), 18340-18348. DOI: 10.1021/la102845k.CrossrefGoogle Scholar

  • [18] Li, A.; Shen, H.; Ren, H.; Wang, C.; Wu, D.; Martin, R. A.; Qiu, D., Bioactive organic/inorganic hybrids with improved mechanical performance. J. Mater. Chem. B 2015, 3 (7), 1379-1390. DOI: 10.1039/c4tb01776e.CrossrefGoogle Scholar

  • [19] Yao, A.;Wang, D.; Huang,W.; Fu, Q.; Rahaman, M. N.; Day, D. E., In Vitro Bioactive Characteristics of Borate-Based Glasses with Controllable Degradation Behavior. J. Am. Ceram. Soc. 2007, 90 (1), 303-306. DOI: 10.1111/j.1551-2916.2006.01358.x.CrossrefGoogle Scholar

  • [20] Mondal, D.; Rizkalla, A. S.; Mequanint, K., Bioactive borophosphosilicate-polycaprolactone hybrid biomaterials via a non-aqueous sol gel process. RSC Advances 2016, 6 (95), 92824-92832. DOI: 10.1039/C6RA08339K.Google Scholar

  • [21] Lao, J.; Dieudonne, X.; Fayon, F.; Montouillout, V.; Jallot, E., Bioactive glass-gelatin hybrids: building scaffolds with enhanced calcium incorporation and controlled porosity for bone regeneration. J. Mater. Chem. B 2016, 4 (14), 2486-2497. DOI: 10.1039/c5tb02345a.CrossrefGoogle Scholar

  • [22] Woodruff, M. A.; Hutmacher, D. W., The return of a forgotten polymer: polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35 (10), 1217-1256. DOI: http://dx.doi.org/10.1016/j.progpolymsci.2010.04.002.Google Scholar

  • [23] Sun, H.; Mei, L.; Song, C.; Cui, X.;Wang, P., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27 (9), 1735-1740. DOI: http://dx.doi.org/10.1016/j.biomaterials.2005.09.019.CrossrefGoogle Scholar

  • [24] Ma, Z.; Gao, C.; Gong, Y.; Shen, J., Parafln spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2003, 67B (1), 610-617. DOI: 10.1002/jbm.b.10049.CrossrefGoogle Scholar

  • [25] Moore Michael, J.; Jabbari, E.; Ritman Erik, L.; Lu, L.; Currier Bradford, L.; Windebank Anthony, J.; Yaszemski Michael, J., Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography. Journal of Biomedical Materials Research Part A 2004, 71A (2), 258-267. DOI: 10.1002/jbm.a.30138.CrossrefGoogle Scholar

  • [26] Bohner, M.; Lemaitre, J., Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009, 30 (12), 2175-2179. DOI: http://dx.doi.org/10.1016/j.biomaterials.2009.01.008.CrossrefGoogle Scholar

  • [27] Declercq, H.; Van den Vreken, N.; De Maeyer, E.; Verbeeck, R.; Schacht, E.; De Ridder, L.; Cornelissen, M., Isolation, proliferation and differentiation of osteoblastic cells to study cell/biomaterial interactions: comparison of different isolation techniques and source. Biomaterials 2004, 25 (5), 757-768. DOI: https://doi.org/10.1016/S0142-9612(03)00580-5.CrossrefGoogle Scholar

  • [28] Midha, S.; Kim, T. B.; van den Bergh, W.; Lee, P. D.; Jones, J. R.; Mitchell, C. A., Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater. 2013, 9 (11), 9169-9182. DOI: http://dx.doi.org/10.1016/j.actbio.2013.07.014.CrossrefGoogle Scholar

  • [29] Pereira, M. M.; Clark, A. E.; Hench, L. L., Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J. Biomed. Mater. Res. 1994, 28 (6), 693-698. DOI: 10.1002/jbm.820280606.CrossrefGoogle Scholar

  • [30] Isaac, J.; Nohra, J.; Lao, J.; Jallot, E.; Nedelec, J.-M.; Berdal, A.; Sautier, J.-M., Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. eCells andMaterials Journal 2011, 21, 130-143.Google Scholar

  • [31] Wang, X.; Li, X.; Ito, A.; Sogo, Y., Synthesis and characterization of hierarchically macroporous and mesoporous CaO-MO-SiO2-P2O5(M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater. 2011, 7 (10), 3638-3644. DOI: http://dx.doi.org/10.1016/j.actbio.2011.06.029.CrossrefGoogle Scholar

  • [32] Sepulveda, P.; Jones, J. R.; Hench, L. L., Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. 2002, 59 (2), 340-348. DOI: 10.1002/jbm.1250.CrossrefGoogle Scholar

  • [33] Hulbert, S. F.; Morrison, S. J.; Klawitter, J. J., Tissue reaction to three ceramics of porous and non-porous structures. J. Biomed. Mater. Res. 1972, 6 (5), 347-374. DOI: 10.1002/jbm.820060505.CrossrefGoogle Scholar

  • [34] Karageorgiou, V.; Kaplan, D., Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26 (27), 5474-5491. DOI: http://dx.doi.org/10.1016/j.biomaterials.2005.02.002.CrossrefGoogle Scholar

  • [35] Ohtsuki, C.; Kokubo, T.; Yamamuro, T., Mechanism of apatite formation on CaO-SiO2-P2O5glasses in a simulated body fluid. J. Non-Cryst. Solids 1992, 143, 84-92. DOI: http://dx.doi.org/10.1016/S0022-3093(05)80556-3.CrossrefGoogle Scholar

  • [36] Kim, E.-J.; Bu, S.-Y.; Sung, M.-K.; Choi, M.-K., Effects of silicon on osteoblast activity and bone mineralization of MC3T3- E1 cells. Biol. Trace Elem. Res. 2013, 152 (1), 105-112. DOI: 10.1007/s12011-012-9593-4.CrossrefGoogle Scholar

  • [37] Zou, S.; Ireland, D.; Brooks, R. A.; Rushton, N.; Best, S., The effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 90B (1), 123-130. DOI: 10.1002/jbm.b.31262.CrossrefGoogle Scholar

  • [38] Lu, X.; Leng, Y., Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials 2005, 26 (10), 1097-1108. DOI: http://dx.doi.org/10.1016/j.biomaterials.2004.05.034.Google Scholar

  • [39] Dorozhkin, S. V.; Epple, M., Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition 2002, 41 (17), 3130-3146. DOI: 10.1002/1521- 3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1.CrossrefGoogle Scholar

  • [40] Kokubo, T., Apatite formation on surfaces of ceramics, metals and polymers in body environment. Acta Mater. 1998, 46 (7), 2519-2527. DOI: http://dx.doi.org/10.1016/S1359-6454(98)80036-0.CrossrefGoogle Scholar

  • [41] Vallet-Regí, M.; Ragel, C. V.; Salinas, Antonio J., Glasses with medical applications. Eur. J. Inorg. Chem. 2003, 2003 (6), 1029-1042. DOI: 10.1002/ejic.200390134.CrossrefGoogle Scholar

  • [42] Gibson, L. J., Biomechanics of cellular solids. J. Biomech. 2005, 38 (3), 377-399. DOI: http://dx.doi.org/10.1016/j.jbiomech.2004.09.027.CrossrefGoogle Scholar

  • [43] Kopperdahl, D. L.; Keaveny, T. M., Yield strain behavior of trabecular bone. J. Biomech. 1998, 31 (7), 601-608. DOI: http://dx.doi.org/10.1016/S0021-9290(98)00057-8.CrossrefGoogle Scholar

  • [44] Engelberg, I.; Kohn, J., Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 1991, 12 (3), 292-304. DOI: http://dx.doi.org/10.1016/0142-9612(91)90037-B.CrossrefGoogle Scholar

  • [45] Van de Velde, K.; Kiekens, P., Biopolymers: overview of several properties and consequences on their applications. Polym. Test. 2002, 21 (4), 433-442. DOI: http://dx.doi.org/10.1016/S0142-9418(01)00107-6.CrossrefGoogle Scholar

  • [46] Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2006, 27 (18), 3413-3431. DOI: http://dx.doi.org/10.1016/j.biomaterials.2006.01.039.CrossrefGoogle Scholar

  • [47] Rhee, S.-H.; Choi, J.-Y.; Kim, H.-M., Preparation of a bioactive and degradable PCL/silica hybrid through a sol-gel method. Biomaterials 2002, 23 (24), 4915-4921. DOI: http://dx.doi.org/10.1016/S0142-9612(02)00251-X.CrossrefGoogle Scholar

  • [48] Allan, I.;Newman, H.;Wilson, M., Antibacterial activity of particulate Bioglassr against supra- and subgingival bacteria. Biomaterials 2001, 22 (12), 1683-1687. DOI: http://dx.doi.org/10.1016/S0142-9612(00)00330-6.CrossrefGoogle Scholar

  • [49] Hynes, R. O., Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992, 69 (1), 11-25. DOI: http://dx.doi.org/10.1016/0092-8674(92)90115-S.CrossrefGoogle Scholar

  • [50] Jianhua, W.; Toshio, I.; Naoto, O.; Takayasu, I.; Takashi, M.; Baolin, L.;Masao, Y., Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomedical Materials 2009, 4 (4), 045002.Google Scholar

  • [51] Brodbeck, W. G.; Shive, M. S.; Colton, E.; Nakayama, Y.; Matsuda, T.; Anderson, J. M., Influence of biomaterial surface chemistry on the apoptosis of adherent cells. J. Biomed. Mater. Res. 2001, 55 (4), 661-668. DOI: 10.1002/1097- 4636(20010615)55:4<661::aid-jbm1061>3.0.co;2-f.CrossrefGoogle Scholar

  • [52] Brodbeck, W. G.; Patel, J.; Voskerician, G.; Christenson, E.; Shive, M. S.; Nakayama, Y.; Matsuda, T.; Ziats, N. P.; Anderson, J. M., Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (16), 10287-10292. DOI: 10.1073/pnas.162124199.CrossrefGoogle Scholar

  • [53] Olmo, N.; Martı; x; n, A. I.; Salinas, A. J.; Turnay, J.; Vallet, R.; x; Marı; x; Lizarbe, M. A., Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 2003, 24 (20), 3383-3393. DOI: https://doi.org/10.1016/S0142-9612(03)00200-X.CrossrefGoogle Scholar

  • [54] Schmidt-Bleek, K.; Schell, H.; Schulz, N.; Hoff, P.; Perka, C.; Buttgereit, F.; Volk, H.-D.; Lienau, J.; Duda, G. N., Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012, 347 (3), 567-573. DOI: 10.1007/s00441-011-1205-7.CrossrefGoogle Scholar

  • [55] Lai,W.; Garino, J.; Ducheyne, P., Silicon excretion from bioactive glass implanted in rabbit bone. Biomaterials 2002, 23 (1), 213-217. DOI: http://dx.doi.org/10.1016/S0142-9612(01)00097-7.CrossrefGoogle Scholar

About the article

Received: 2018-08-31

Accepted: 2018-11-10

Published Online: 2018-12-05

Published in Print: 2018-11-01


Citation Information: Biomedical Glasses, Volume 4, Issue 1, Pages 108–122, ISSN (Online) 2299-3932, DOI: https://doi.org/10.1515/bglass-2018-0010.

Export Citation

© by Cédric Bossard, et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Diogo Santos, Talita Martins, Sandhra Carvalho, Marivalda Pereira, Manuel Houmard, and Eduardo Nunes
Materials Letters, 2019, Page 126647
[2]
Henri Granel, Cédric Bossard, Anne-Margaux Collignon, Fabien Wauquier, Julie Lesieur, Gael Y Rochefort, Edouard Jallot, Jonathan Lao, and Yohann Wittrant
ACS Applied Bio Materials, 2019, Volume 2, Number 8, Page 3473
[3]
Henri Granel, Cédric Bossard, Lisa Nucke, Fabien Wauquier, Gael Y. Rochefort, Jérôme Guicheux, Edouard Jallot, Jonathan Lao, and Yohann Wittrant
Advanced Healthcare Materials, 2019, Volume 8, Number 11, Page 1801542

Comments (0)

Please log in or register to comment.
Log in