Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Biomedical Human Kinetics

The Journal of University of Physical Education, Warsaw

1 Issue per year

Open Access
Online
ISSN
2080-2234
See all formats and pricing
In This Section

Omega-3 fatty acids and exercise: a review of their combined effects on body composition and physical performance

Gül Tiryaki-Sönmez
  • Lehman College, Department of Health Sciences, The City University of New York, Bronx, NY, USA
/ Brad Schoenfeld
  • Lehman College, Department of Health Sciences, The City University of New York, Bronx, NY, USA
/ Serife Vatansever-Ozen
  • School of Physical Education and Sport, Department of Training Science, Abant Izzet Baysal University, Bolu, Turkey
Published Online: 2011-03-10 | DOI: https://doi.org/10.2478/v10101-011-0007-4

Omega-3 fatty acids and exercise: a review of their combined effects on body composition and physical performance

Omega-3 (n-3) fatty acids, and the long-chain n-3 derivatives eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in particular, have been extensively researched for their nutritive effects. Among their many purported benefits, n-3 acids have been implicated as positive mediators of cardiovascular health and body composition. It has therefore been speculated that supplementation may enhance the beneficial effects of physical activity, potentiating greater reductions in body fat and improvements in exercise performance. This paper has three objectives: first, to assess the theoretical basis for a synergistic ef-fect when n-3 supplementation is combined with exercise; second, to review the literature as to specific findings on the subject and third, to make relevant conclusions and recommendations for future research.

Keywords: Omega-3 fatty acids; Body composition; Physical performance

  • Albert C. M., H. Campos, M. J. Stampfer, P. M. Ridker, J. E. Manson, W. C. Willett, J. Ma (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N. Engl. J. Med. 346:1113-1118.Google Scholar

  • Alexander J. W (1998) Immunonutrition: the role of omega-3 fatty acids. Nutrition 14:627-633.PubMedCrossrefGoogle Scholar

  • Alexander J. W., H. Saito, O. Trocki, C. K. Ogle (1986) The importance of lipid type in the diet after burn injury. Ann. Surg. 204:1-8.Google Scholar

  • Bandini L. G., D. A. Schoeller, H. N. Cyr, W. H. Dietz (1990) Validity of reported energy intake in obese and non-obese adolescents. Am. J. Clin. Nutr. 52: 421-425.Google Scholar

  • Bergeron K., P. Julien, T. A. Davis, A. Myre, M. C. Thivierge (2007). Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition. J. Lipid. Res. 48:2396-2410.CrossrefGoogle Scholar

  • Bodine, S. C., T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover, R. Bauerlein, E. Zlotchenko, A. Scrimgeour, J. C. Lawrence, D. J. Glass, G. D. Yancopoulos (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell. Biol. 3:1014-1019.PubMedCrossrefGoogle Scholar

  • Brilla L. R., T. E. Landerholm (1990) Effect of fish oil supplementation and exercise on serum lipids and aerobic fitness. J. Sport Med. Phys. Fitn. 30:173-180.Google Scholar

  • Buckley J. D., S. Burgess, K. J. Murphy, P. R. Howe (2009) DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian Rules footballers. J. Sci. Med. Sport 12:503-507.CrossrefGoogle Scholar

  • Calabresi L., N. Villa, M. Canavesi, C. R. Sirtori, R. W. James, F. Bernini, G. Franceschini (2004) An omega-3 polyunsaturated fatty acid concentrate increases plasma high-density lipoprotein 2 cholesterol and paraoxonase levels in patients with familial combined hyperlipidemia. Metabolism 53:153-158.PubMedCrossrefGoogle Scholar

  • Calder P. C. (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83: 1505S-1519S.Google Scholar

  • Cartwright I. J., A. G. Pockley, J. H. Galloway, M. Greaves, F. E. Preston (1985) The effects of dietary ω-3 polyunsaturated fatty acids on erythrocyte membrane phospholipids, erythrocyte deformability and blood viscosity in healthy volunteers. Atherosclerosis 55:267-281.CrossrefPubMedGoogle Scholar

  • Clarke S. D. (2000) Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 83:S59-S66.Google Scholar

  • Clarke S. D. (2001) Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome. J. Nutr. 131:1129-1132.Google Scholar

  • Clarke S. D., D. Jump (1997) Polyunsaturated fatty acids regulate lipogenic and peroxisomal gene expression by independent mechanisms. Prostaglandins Leukot. Essent. Fatty Acids 57:65-69.CrossrefGoogle Scholar

  • Couet C., P. Delarue, J. M. Autoine, F. Lamisse (1997) Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. Relat. Metab. Disord. 21:637-43.CrossrefPubMedGoogle Scholar

  • Cunnane S. C., K. R. McAdoo, D. F. Horrobin (1986) n-3 Essential fatty acids decrease weight gain in genetically obese mice. Br. J. Nutr. 56:87-95.CrossrefGoogle Scholar

  • Defina, L. F., L. G. Marcoux, S. M. Devers, J. S. Cleaver, B. L. Willis (2011) Effects of omega-3 supplementation in combination with diet and exercise on weight loss and body composition. Am J Clin Nutr. 93:455-462.CrossrefPubMedGoogle Scholar

  • DeLany J. P., M. M. Windhauser, C. M. Champagne, G. A. Bray (2000) Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72:905-911.Google Scholar

  • Diep Q. N., R. M. Touyz, E. L. Schiffrin (2000) Docosahexaenoic acid, a peroxisome proliferator-activated receptor-alpha ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38 mitogen-activated protein kinase. Hypertension 36:851-855.CrossrefGoogle Scholar

  • Dyerberg, J., H. O. Bang, E. Stofferson, S. Moncada, J. R. Vane (1978) Eicosapentaenoic acid and prevention of thrombosis and atherosclerosis. Lancet 2:117-119.CrossrefPubMedGoogle Scholar

  • Fleischhauer F. J., W. D. Yan, T. A. Fischell (1993) Fish oil improves endothelium-dependent coronary vasodilation in heart transplant recipients. J. Am. Coll. Cardiol. 21:982-989.CrossrefGoogle Scholar

  • Fontani G., F. Corradeschi, A. Felici, F. Alfatti, R. Bugarini, A. I. Fiaschi, D. Cerretani, G. Montorfano, A. M. Rizzo, B. Berra (2005) Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with omega-3 polyunsaturated fatty acids. Eur. J. Clin. Invest. 35:499-507.CrossrefGoogle Scholar

  • Galea G., R. J. L. Davidson (1985) Hemorrheology of marathon running. Int. J. Sports. Med. 6:136-138.PubMedCrossrefGoogle Scholar

  • Gani O. A. (2008) Are fish oil omega-3 long-chain fatty acids and their derivatives peroxisome proliferator-activated receptor agonists? Cardiovasc. Diabetol. 20(7):6.CrossrefGoogle Scholar

  • Gingras A. A., P. J. White, P. Y. Chouinard, P. Julien, T. A. Davis, L. Dombrowski, Y. Couture, P. Dubreuil, A. Myre, K. Bergeron, A. Marette, M. C. Thivierge (2007) Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 579:269-284.Google Scholar

  • Guezennec C. Y., J. F. Nadaud, P. Satabin, F. Leger, P. Lafargue (1989) Influence of polyunsaturated fatty acid diet on the hemorrheological response to physical exercise in hypoxia. Int. J. Sports Med. 10:286-291.PubMedCrossrefGoogle Scholar

  • Hainault I., M. Carolotti, E. Hajduch, C. Guichard, M. Lavau (1993) Fish oil in a high lard diet prevents obesity, hyperlipidemia, and adipocyte insulin resistance in rats. Ann. NY. Acad. Sci. 683: 98-101.Google Scholar

  • Harris W. S. (1989) Fish oils and plasma lipid and lipo-protein metabolism in humans: a critical review. J. Lipid Res. 30:785-807.Google Scholar

  • Heller A, T. Koch, K. Schmeck, K. Van Ackem (1998) Lipid mediators in inflammatory disorders. Drugs 55:487-496.CrossrefPubMedGoogle Scholar

  • Herrmann W., J. Biermann, G. M. Kostner (1995) Comparison of effects of N-3 to N-6 fatty acids on serum level of lipoprotein(a) in patients with coronary artery disease. Am. J. Cardiol. 76:459-462.PubMedCrossrefGoogle Scholar

  • Hill A. M., J. D. Buckley, K. J. Murphy, P. R. C. Howe (2007) Combining fish-oil supplements with regular aerobic exercise improves body composition and cardiovascular disease risk factors. Am. J. Clin. Nutr. 85:1267-1274.Google Scholar

  • Holman R. T. (1998) The slow discovery of the importance of omega 3 essential fatty acids in human health. J. Nutr. 128:427S-433S.Google Scholar

  • Hu, F. B., L. Bronner, W. C. Willett, M. J. Stampfer, K. M. Rexrode, C. M. Albert, J. E. Manson (2002) Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 287:1815-1821.CrossrefPubMedGoogle Scholar

  • Jones P. J. (1989) Effect of fatty acid composition of dietary fat on energy balance and expenditure in hamsters. Can. J. Physiol. Pharmacol. 67:994-998.CrossrefGoogle Scholar

  • Jump D. B., S. D. Clarke, A. Thelen, M. Liimatta (1994) Coordinate regulation of glycolytic and lipogenic gene expression by polyunsaturated fatty acids. J. Lipid Res. 35:1076-1084.Google Scholar

  • Krebs J. D., L. M. Browning, N. K. McLean, J. L. Rothwell, G. D. Mishra, C. S. Moore, S. A. Jebb (2006) Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int. J. Obes. 30:1535-1544.CrossrefGoogle Scholar

  • Kummerow F. A. (1983) Modification of cell membrane composition by dietary lipids and its implications for atherosclerosis. Ann. NY. Acad. Sci. 414:29-43.Google Scholar

  • Kunesová M., R. Braunerová, P. Hlavatý, E. Tvrzická, B. Stanková, J. Skrha, J. Hilgertová, M. Hill, J. Kopecký, M. Wagenknecht, V. Hainer, M. Matoulek, J. Parízková, A. Zák, S. Svacina (2006) The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol. Res. 55:63-72.PubMedGoogle Scholar

  • Leaf D. A., C. R. Rauch (1988) Omega-3 supplementation and estimated VO2 max: a double blind randomized controlled trial in athletes. Ann. Sport Med. 4:37-40.Google Scholar

  • Lemaitre R. N., I. B. King, D. Mozaffarian, L. H. Kuller, R. P. Tracy, D. S. Siscovick (2003) n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am. J. Clin. Nutr. 77:319-325.Google Scholar

  • Lenn J., T. Uhl, C. Mattacola, G. Boissonneault, J. Yates, W. Ibrahim, G. Bruckner (2002) The effects of fish oil and isoflavones on delayed onset muscle soreness. Med. Sci. Sport Exerc. 34:1605-1613.CrossrefGoogle Scholar

  • Lin Q., S. E. Ruuska, N. S. Shaw, D. Dong, N. Noy (1999) Ligand selectivity of the peroxisome proliferator-activated receptor alpha. Biochemistry 5(38):185-190.CrossrefGoogle Scholar

  • Martins C., L. Morgan, H. Truby (2008) A review of the effects of exercise on appetite regulation: an obesity perspective. Int. J. Obes. 32:1337-1347.CrossrefGoogle Scholar

  • Meydani S. N., S. Endres, M. M. Woods, B. R. Goldin, C. Soo, A. Morrill-Labrode, C. A. Dinarello, S. L. Gorbach (1991) Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J. Nutr. 121:547-555.Google Scholar

  • Mori T. A., L. J. Beilin, V. Burke, J. Morris, J. Ritchie (1997) Interactions between dietary fat, fish, and fish oils and their effects on platelet function in men at risk of cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 17:279-286.CrossrefPubMedGoogle Scholar

  • Mori T. A., G. F. Watts, V. Burke, E. Hilme, I. B. Puddey, I. J. Beilin (2000) Differential effects of eicosapentaenoic acid and docosahexaenoic acid on vascular reactivity of the forearm microcirculation in hyperlipidemic, overweight men. Circulation 102:1264-1269.CrossrefPubMedGoogle Scholar

  • Nakamura, M. T., T. Y. Nara (2004) Structure, function and dietary regulation of Δ6, Δ5 and Δ9 desaturases. Ann. Rev. Nutr. 24:345-376.CrossrefGoogle Scholar

  • Neschen S., K. Morino, J. Dong, Y. Wang-Fischer, G. W. Cline, A. J. Romanelli, J. C. Rossbacher, I. K. Moore, W. Regittnig, D. S. Munoz, J. H. Kim, G. L. Shulman (2007) n-3 Fatty acids preserve insulin sensitivity in vivo in a peroxisome proliferator-activated receptor-alpha-dependent manner. Diabetes 56:1034-1041.CrossrefGoogle Scholar

  • Noreen E. E., M. J. Sass, M. L. Crowe, V. A. Pabon, J. Brandauer, L. K. Averill (2010) Effects of supplemental fish oil on resting metabolic rate, body composition, and salivary cortisol in healthy adults. J. Int. Soc. Sports Nutr. 8:7-31.Google Scholar

  • Okuno M, K. Kajiwara, S. Imai, T. Kobayashi, N. Honma, T. Maki, K. Suruga, T. Goda, S. Takase, Y. Muto, H. Moriwaki (1997) Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J. Nutr. 127:1752-1757.Google Scholar

  • Oomen C. M., E. J. Feskens, L. Räsänen, F. Fidanza, A. M. Nissinen, A. Menotti, D. Kromhout (2002) Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands. Am. J. Epidemiol. 151:999-1006.Google Scholar

  • Oostenbrug G. S., R. P. Mensink, M. R. Hardeman, T. De Vries, F. Brouns, G. Hornstra (1997) Exercise performance, red blood cell deformability, and lipid peroxidation: effects of fish oil and vitamin E. J. Appl. Physiol. 83:746-752.Google Scholar

  • Parra D., A. Ramel, N. Bandarra, M. Kiely, A. Martínez, I. Thorsdottir (2008) A diet rich in long chain omega-3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite 51:676-680.CrossrefGoogle Scholar

  • Parrish C. C., D. A. Pathy, A. Angel (1990) Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism 39: 217-219.PubMedCrossrefGoogle Scholar

  • Paschos G. K., F. Magkos, D. B. Panagiotakos, V. Votteas, A. Zampelas (2007) Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients. Eur. J. Clin. Nutr. 61:1201-1206.CrossrefGoogle Scholar

  • Pellizzon M., A. Buison, F. Ordiz Jr, L. Santa Ana, K. L. Jen (2002) Effects of dietary fatty acids and exercise on bodyweight regulation and metabolism in rats. Obes. Res. 10:947-955.CrossrefGoogle Scholar

  • Peoples G. E., P. L. McLennan, P. R. Howe, H. Groeller (2008) Fish oil reduces heart rate and oxygen consumption during exercise. J. Cardiovasc. Pharm. 52:540-547.CrossrefGoogle Scholar

  • Phang M., A. J. Sinclair, L. F. Lincz, M. L. Garg (2010) Gender-specific inhibition of platelet aggregation following omega-3 fatty acid supplementation. Nutr. Metab. Cardiovasc. DOI:10.1016/j. numecd.2010.04.012.CrossrefGoogle Scholar

  • Plourde M., S. C. Cunnane (2007) Extremely limited synthesis of long chain polyunsaturates in adults: implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metab. 32:619-634.CrossrefPubMedGoogle Scholar

  • Prasad K. (2009) Flaxseed and cardiovascular health. J. Cardiovasc. Pharmacol. 54:369-377.CrossrefGoogle Scholar

  • Raastad T., A. T. Hostmark, S. B. Stromme (1997) Omega-3 fatty acid supplementation does not improve maximal aerobic power, anaerobic threshold and running performance in well trained soccer players. Scand. J. Med. Sci. Spor. 7:25-31.Google Scholar

  • Raclot T., R. Groscolas, D. Langin, P. Ferre (1997) Site-specific regulation of gene expression by n-3 polyunsaturated fatty acids in rat white adipose tissues. J. Lipid Res. 38:1963-1972.Google Scholar

  • Rissanen T., S. Voutilainen, K. Nyyssonen, T. A. Lakka, J. T. Salonen (2000) Fish oil-derived fatty acids, docosahexaenoic acid and docosapentaenoic acid, and the risk of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Circulation 102:2677-2679.PubMedCrossrefGoogle Scholar

  • Robinson J. G., N. J. Stone (2006) Antiatherosclerotic and antithrombotic effects of omega-3 fatty acids. Am. J. Cardiol. 98:39i-49i.CrossrefGoogle Scholar

  • Ryan A. M., J. V. Reynolds, L. Healy, M. Byrne, J. Moore, N. Brannelly, A. McHug, D. McCormack, P. Flood (2009) Enteral nutrition enriched with eicosapentaenoic acid (EPA) preserves lean body mass following esophageal cancer surgery: results of a double-blinded randomized controlled trial. Ann. Surg. 249:355-363.Google Scholar

  • Saynor R., V. Derel, T. Gillott (1984) The long-term effect of dietary supplementation with fish lipid concentrate on serum lipids, bleeding time, platelets and angina. Atherosclerosis 50:3-10.CrossrefGoogle Scholar

  • Schacky, von C. (2007) n-3 PUFA in CVD: influence of cytokine polymorphism. Proc. Nutr. Soc. 66:166-170.CrossrefGoogle Scholar

  • Schacky, von C., P. Angerer, W. Kothny, K. Theisen, H. Mudra, (1999) The effect of dietary omega-3 fatty acids on coronary atherosclerosis. A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 130:554-562.Google Scholar

  • Schoeller D. A. (1995) Limitations in the assessment of dietary energy intake by self-report. Metabolism 44:18-22CrossrefPubMedGoogle Scholar

  • Smith G. I., P. Atherton, D. N. Reeds, B. S. Mohammed, D. Rankin, M. J. Rennie, B. Mittendorfer (2010) Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. Am. J. Clin. Nutr. (e-publ.).Google Scholar

  • Su W., P. J. Jones (1993) Dietary fatty acid composition influences energy accretion in rats. J. Nutr. 123(:2109-2114.Google Scholar

  • Sugden M. C., K. Bulmer, G. F. Gibbons, B. L. Knight, M. J. Holness (2002) Peroxisome-proliferator-activated receptor-alpha (PPARalpha) deficiency leads to dysregulation of hepatic lipid and carbohydrate metabolism by fatty acids and insulin. Biochem. J. 1(364 Pt 2):361-368.Google Scholar

  • Suzukawa M., M. Abbey, P. R. Howe, P. J. Nestel (1995) Effects of fish oil fatty acids on low density lipoprotein size, oxidizability, and uptake by macrophages. J. Lipid Res. 36:473-484.Google Scholar

  • Szygula Z. (1990) Erythrocytic system under the influence of physical exercise and training. Sports Med. 10:181-197.CrossrefPubMedGoogle Scholar

  • Tartibian B., B. H. Maleki, A. Abbasi (2009) The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin. J. Sport Med. 19:115-119.CrossrefPubMedGoogle Scholar

  • Terano T., A. Hirai, T. Hamazaki, S. Kobayashi, T. Fujita, Y. Tamura, A. Kumagai (1983) Effect of oral administration of highly purified eicosapentaenoic acid on platelet function, blood viscosity and red cell deformability in healthy human subjects. Atherosclerosis 46:321-331.CrossrefPubMedGoogle Scholar

  • Thomas, G., M. N. Hall (1997) TOR signaling and control of cell growth. Curr. Opin. Cell Biol. 9:782-787.CrossrefPubMedGoogle Scholar

  • Thorsdottir I., H. Tomasson, I. Gunnarsdottir, E. Gisladottir, M. Kiely, M. D. Parra, N. M. Bandarra, G. Schaafsma, J. A. Martinez (2007) Randomized trial of weight-loss diets for young adults varying in fish and fish oil content. Int. J. Obesity (London) 31:1560-1566.CrossrefGoogle Scholar

  • Trebble T. M., S. A. Wootton, E. A. Miles (2003) Prostaglandin E2 production and T-cell function after fish-oil supplementation: response to antioxidant co-supplementation. Am. J. Clin. Nutr. 78:376-382.Google Scholar

  • Walser B., R. M. Giordano, C. L. Stebbins (2006) Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur. J. Appl. Physiol. 97:347-354.CrossrefGoogle Scholar

  • Warner J. G., I. H Ullrich, M. J Albrink, R. A. Yeater (1989) Combined effects of aerobic exercise and omega-3 fatty acids in hyperlipidemic persons. Med. Sci. Sport Exerc. 21:498-505.Google Scholar

  • Whitehouse A. S., H. J. Smith, J. L. Drake, M. J. Tisdale (2001) Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Cancer Res. 61:3604-3609.PubMedGoogle Scholar

  • Whitehouse A. S., M. J. Tisdale (2001) Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem. Biophys. Res. 285:598-602.Google Scholar

  • Willumsen N., J. Skorve, S. Hexeberg, A. C. Rustan, R. K. Berge (1993) The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis. Lipids 28: 683-690.CrossrefPubMedGoogle Scholar

  • Yamori, Y., Y. Nara, N. Iritani, R. J. Workman, T. Inagami (1985) Comparison of serum phospholipid fatty acids among fishing and farming Japanese populations and American islanders. J. Nutr. Sci. Vitaminol. (Tokyo) 31:417-422.CrossrefGoogle Scholar

  • Yates A., J. Norwig, J. C. Maroon, J. Bost, J. M. Bradley, M. Duca, D. A. Wecht, R. Grove, A. Iso, I. Cobb, N. Ross, M. Borden (2009). Evaluation of Lipid Profiles and the Use of Omega-3 Essential Fatty Acid in Professional Football Players. Sports Health a Multidisciplinary Approach 1:21-30.Google Scholar

  • Zammit V. A. (1999) The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function. Biochem. J. 1(343 Pt 3):505-515.Google Scholar

  • Zhao G., T. D. Etherton, K. R. Martin, S. G. West, P. J. Gillies, P. M. Kris-Etherton (2004) Dietary alpha-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J. Nutr. 134:2991-2997.Google Scholar

About the article


Published Online: 2011-03-10

Published in Print: 2011-01-01


Citation Information: Biomedical Human Kinetics, ISSN (Online) 2080-2234, DOI: https://doi.org/10.2478/v10101-011-0007-4.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in