Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomedical Human Kinetics

The Journal of University of Physical Education, Warsaw

1 Issue per year

Open Access
Online
ISSN
2080-2234
See all formats and pricing
More options …

Kinematic gait analysis of a young man after amputation of the toes

Wanda Forczek
  • Corresponding author
  • Department of Biomechanics, Faculty of Physical Education and Sport, University School of Physical Education, Krakow, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tadeusz Ruchlewicz
  • Department of Biomechanics, Faculty of Physical Education and Sport, University School of Physical Education, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Gawęda
  • Department of Biomechanics, Faculty of Physical Education and Sport, University School of Physical Education, Krakow, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-06 | DOI: https://doi.org/10.2478/bhk-2014-0007

Summary

Study aim: the foot is recognised as a “functional unit” with two important aims: to support body weight and to serve as a lever to propel the body forward. When it is impaired, the locomotor pattern has to adapt to compensate for the dysfunction. The purpose of this study was to investigate gait kinematics of a man after bilateral partial amputation of the toes.

Material and methods: the subject of the study was a young man aged 30 years (body height and mass: 186 cm, 82 kg) who suffered a frostbite injury in the feet while climbing in the severe mountain conditions. After a few months of treatment, the necessary amputation occurred. Three-dimensional lower limb kinematics was collected from motion capture system (Vicon 250) and Golem marker set-up using 5 video-based cameras with infrared strobes. The subject performed over-ground walking at self-selected speed, first barefoot, then wearing athletic shoes.

Results: the patient’s results are the mean values of sixteen full gait cycles. The spatiotemporal parameters were lower during gait without shoes. In terms of the angular changes of the lower limb joints in sagittal plane, the analysis revealed similar functional patterns and typical trends in both recorded conditions. The differences, however, occurred in their amplitude. A larger range of motion was generally noted in shod conditions. The higher the joint was, the smaller the differences were.

Conclusion: changes in gait due to the forefoot dysfunction may be stabilizing adaptations related to fear of falling. Footwear provided more stable conditions.

Keywords : Biomechanics; Barefoot; Footwear; Frostbite; Forefoot

References

  • 1. Dingwell J.B., Cusumano J.P., Sternad D., Cavanagh P.R. (2000) Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking, J. Biomech., 33: 1269-1277.CrossrefGoogle Scholar

  • 2. Federolf P., Roos L., Nigg B. (2012) The effect of footwear on postural control in bipedal quiet stance. Footwear Science, 4(2): 115-122. CrossrefGoogle Scholar

  • 3. Golant A., Nord R.M., Paksima N., Posner M.A. (2008) Cold exposure injuries to the extremities. J. Am. Acad. Orthop. Surg.,16(12): 704-15).Google Scholar

  • 4. Hamacher D., Singh N.B., Van Dieën J.H., Heller M.O., Taylor W.R. (2011) Kinematic measures for assessing gait stability in elderly individuals: a systematic review. J. R. Soc. Interface, 8: 1682–1698. DOI:10.1098/rsif.2011.0416.Web of ScienceCrossrefGoogle Scholar

  • 5. Hermodsson Y., Ekdahl C, Persson B. M., Roxendal G. (1994) Gait in male trans-tibial amputees: a comparative study with healthy subjects in relation to walking speed, Prosthet. Orthot. Int., IS, 68-77.Google Scholar

  • 6. Hughes J., Clark P., Klenerman L. (1990) The importance of the toes in walking. J. Bone. Joint. Surg., 72-B(2).Google Scholar

  • 7. Isakov E., Keren O., Benjuya N. (2000) Trans-tibial amputee gait: Time-distance parameters and EMG activity. Prosthet. Orthot. Int., 24(3): 216-220.CrossrefPubMedGoogle Scholar

  • 8. Koepsell T.D., Wolf M.E., Buchner D.M., Kukull W.A., LaCroix A.Z., Tencer A.F., Frankenfeld C.L., Tautvydas M., Larson E.B. (2004) Footwear Style and Risk of Falls in Older Adults. J. Am. Geriatr. Soc., 52(9): 1495-1501, available from: http://dx.doi.org/10.1111/j.1532-5415.2004.52412.xCrossrefGoogle Scholar

  • 9. Laroche D., Ornetti P., Thomas E., Ballay Y., Maillefert J.F., Pozzo T. (2007) Kinematic adaptation of locomotor pattern in rheumatoid arthritis patients with forefoot impairment. Exp. Brain Res., 176(1): 85-97.PubMedWeb of ScienceGoogle Scholar

  • 10. Laroche D., Pozzo T., Ornetti P., Tavernier C., Maillefert J.F. (2006) Effect of loss of metatarsophalangeal joint mobility on gait in rheumatoid arthritis patients. Rheumatology (Oxford) 45: 435-440. DOI:10.1093/rheumatology/kei168.CrossrefGoogle Scholar

  • 11. Maki BE. (1997) Gait changes in older adults: predictors of falls or indicators of fear? J Am Geriatr Soc 45: 313–320.PubMedGoogle Scholar

  • 12. Minns R.J., Craxford A.D. (1984) Pressure under the forefoot in rheumatoid arthritis. A comparison of static and dynamic methods of assessment. Clin. Orthop. 187: 235–242.Google Scholar

  • 13. Mueller M.M., Salsich G.B., Bastian A.J. (1998) Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls. Gait Posture, 7: 200–206.CrossrefPubMedGoogle Scholar

  • 14. O’Connell P.G., Lohmann Siegel K., Kepple T.M., Stanhope S.J., Gerber L.H. (1998) Forefoot deformity, pain, and mobility in rheumatoid and nonarthritic subjects. J. Rheumatol., 25: 1681-1686.Google Scholar

  • 15. Perry J. (1992) Gait Analysis: Normal and Pathological Function. Thorofare, NJ: Slack Inc.Google Scholar

  • 16. Quebedeaux T.L., Lavery L.A., Lavery D.C. (1996) The Development of Foot Deformities and Ulcers After Great Toe Amputation in Diabetes, Diabetes Care, 19(2): 165-167.CrossrefPubMedGoogle Scholar

  • 17. Ridola C., Palma A. (2001) Functional anatomy and imaging of the foot. Ital. J. Anat. Embryol., 106: 85-98.Google Scholar

  • 18. Sacco I.C., Hamamoto A.N., Gomes A.A., Onodera A.N., Hirata R.P., Hennig E.M. (2009) Role of ankle mobility in foot rollover during gait in individuals with diabetic neuropathy. Clin. Biomech., 24(8): 687-92. DOI: 10.1016/j.clinbiomech.2009.05.003.CrossrefWeb of ScienceGoogle Scholar

  • 19. Smith L.O. (2006) Alpine climbing: injuries and illness. Phys. Med. Rehabil. Clin. N. Am., 17(3): 633-44.CrossrefGoogle Scholar

  • 20. Soares A.S.O.D.C., Yamaguti E.Y., Mochizuki L., Amadio A.C., Serraso J.C. (2009) Biomechanical parameters of gait among transtibial amputees: A review. Sao Paulo Med. J., 127(5): 302-309.Google Scholar

  • 21. Tinetti M.E., Powell L. (1993) Fear of falling and low self-efficacy: a case of dependence in elderly persons. J. Gerontol., 48: 35-38.CrossrefGoogle Scholar

  • 22. Woodburn J., Helliwell P.S. (1996) Relation between heel position and the distribution of forefoot plantar pressures and skin callosities in rheumatoid arthritis. Ann. Rheum. Dis., 55: 806-810 DOI: 10.1136/ard.55.11.806CrossrefPubMedGoogle Scholar

  • 23. Wright W.G., Ivanenko Y.P., Gurfinkel V.S. (2012) Foot anatomy specialization for postural sensation and control. J. Neuphysiol., 107(5): 1513-1521. DOI: 10.1152/jn.00256.2011.Web of ScienceCrossrefPubMedGoogle Scholar

  • 24. Zafren K. (2013) Frostbite: prevention and initial management. High Alt. Med. Biol., 14(1): 9-12. DOI: 10.1089/ham.2012.1114 CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2014-06-06


Citation Information: Biomedical Human Kinetics, Volume 6, Issue 1, ISSN (Online) 2080-2234, DOI: https://doi.org/10.2478/bhk-2014-0007.

Export Citation

© University of Physical Education, Warsaw, Poland. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in