Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
See all formats and pricing
More options …

Selection of variables in Discrete Discriminant Analysis

Anabela Marques / Ana Sousa Ferreira / Margarida G.M.S. Cardoso
Published Online: 2013-06-05 | DOI: https://doi.org/10.2478/bile-2013-0013


In Discrete Discriminant Analysis one often has to deal with dimensionality problems. In fact, even a moderate number of explanatory variables leads to an enormous number of possible states (outcomes) when compared to the number of objects under study, as occurs particularly in the social sciences, humanities and health-related elds. As a consequence, classi cation or discriminant models may exhibit poor performance due to the large number of parameters to be estimated. In the present paper, we discuss variable selection techniques which aim to address the issue of dimensionality. We speci cally perform classi cation using a combined model approach. In this setting, variable selection is particularly pertinent, enabling the handling of degrees of freedom and reducing computational cost.

Keywords: combining models; Discrete Discriminant Analysis; variable selection

  • Benjamini Y., Hochberg Y.(1995): Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57 289-300.Google Scholar

  • Bishop C.M.(1995): Neural Networks for Pattern Recognition. Oxford University Press.Google Scholar

  • Brito I., Celeux C., Ferreira A.S.(2006): Combining Methods in Supervised Classication: a Comparative Study on Discrete and Continuous Problems. Revstat-Statistical Journal: 4(3): 201-225.Google Scholar

  • Celeux G., Mkhadri A.(1992): Discrete regularized discriminant analysis. Statistics and Computing 2(3): 143-151.CrossrefGoogle Scholar

  • Celeux G., Nakache J.P.(1994): Analyse Discriminante sur Variables Qualitatives. G. Celeux et J. P. Nakache diteurs, Polytechnica.Google Scholar

  • Ferreira A.S.(2000): Combinação de Modelos em Análise Discriminante sobre Variáveis Qualitativas. PhD thesis (in portuguese), Universidade Nova de Lisboa.Google Scholar

  • Ferreira A.S.(2010): A Comparative Study on Discrete Discriminant Analysis through a Hierarchical Coupling Approach. In Classication as a Tool for Research, Studies in Classication, Data Analysis, and Knowledge Organization; Hermann Locarek-Junge, Claus Weihs (Eds.), Springer-Verlag, Heidelberg- Berlin: 137-145.Google Scholar

  • Ferreira A.S.(2004): Combining models approach in Discrete Discriminant Analysis through a committee of methods. In Classication, Clustering, and Data Mining Applications; D. Banks, L. House, F. R. McMorris, P. Arabie, W. Gaul (Eds.), Springer: 151-156.Google Scholar

  • Ferreira A.S., Cardoso M.(2010): Evaluation of Results in Discrete Discriminant Analysis. Book of Abstracts of Stochastic Modeling Techniques and Data Analysis International Conference, Skiadas, C. H. (Eds.), Chania, Creta, Grécia, Junho: 94-95.Google Scholar

  • Ferreira A.S., Celeux G., Bacelar-Nicolau H.(1999): Combining models in discrete discriminant analysis by an hierarchical coupling approach. Proceedings of the IX International Symposium of ASMDA: 159-164.Google Scholar

  • Ferreira A.S., Celeux G., Bacelar-Nicolau H.(2000): Discrete Discriminant Analysis: The performance of Combining Models by an Hierarchical Coupling Approach. In Kiers, Rasson, Groenen and Shader, editors, Data Analysis, Classication and Related Methods, Springer: 181{186.Google Scholar

  • Ferreira A.S., Celeux G., Bacelar-Nicolau H.(2001): New developments on combining models in Discrete Discriminant Analysis by a Hierarchical Coupling approach. Applied Stochastic Models and Data Analysis- ASMDA; G. Govaert, J. Janssen, N. Limnios (Eds.), UTC: 430-435.Google Scholar

  • Goldstein M., Dillon W.R.(1978): Discrete Discriminant Analysis. New York: Wiley.Google Scholar

  • Holm S.(1979): A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6(2): 65-70.Google Scholar

  • Marques A., Ferreira A.S., Cardoso M. (2008): Uma proposta de combinação de modelos em Análise Discriminante. Estatística - Arte de Explicar o Acaso, in Oliveira I. et al. Editores, Ci^encia Estatística, Edições S.P.E.: 393{403.Google Scholar

  • Matusita K. (1955): Decision rules based on distance for problems of fit, two samples and estimation. In Ann. Inst. Stat. Math. 26(4): 631-640.CrossrefGoogle Scholar

  • Pawlak Z.(1982): Rough sets. International Journal of Computer and Information Sci. 11: 341{356.Google Scholar

  • Pearl J.(1988): Probabilistic reasoning in intelligent systems: Networks of plausible inference. Los Altos: Morgan Kaufmann.Google Scholar

  • Prazeres N.L.(1996): Ensaio de um Estudo sobre Alexitimia com o Rorschach e a Escala de Alexitimia de Toronto (TAS-20). Master Thesis, Univ. Lisbon.Google Scholar

  • Saraiva F.(2010): Satisfaçao Conjugal e relaçao coparental ao longo do ciclo vital da familia. Master Thesis, Univ. Lisbon.Google Scholar

  • Silva A.P.D.(2010): Classicaçao supervisionada para dados de elevada dimensăo. Livro de resumos das XVII Jornadas de Classicaçao e Anlise de Dados (JOCLAD 2010), ISCTE Eds. pp. 17.Google Scholar

About the article

Published Online: 2013-06-05

Published in Print: 2013-06-01

Citation Information: Biometrical Letters, Volume 50, Issue 1, Pages 1–14, ISSN (Print) 1896-3811, DOI: https://doi.org/10.2478/bile-2013-0013.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in