Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
Online
ISSN
1896-3811
See all formats and pricing
More options …

Some applications of weighing designs

Małgorzata Graczyk
  • Corresponding author
  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-05 | DOI: https://doi.org/10.2478/bile-2013-0014

SUMMARY

The purpose of this paper is to apply results on weighing designs to the setting of 2m factorial designs. Using weighing designs, we give some proposals for experimental plans. Relevant counterexamples are indicated. Also the results of a simulation study on the existence of weighing designs are presented.

Keywords : chemical balance weighing design; factorial design; spring balance weighing design

  • Banerjee K.S. (1975): Weighing Designs for Chemistry, Medicine. Economics, Operations Research, Statistics. Marcel Dekker Inc., New York.Google Scholar

  • Banerjee T., Mukerjee R. (2008): Optimal factorial designs for cDNA microarray experiments. Ann. Appl. Statist. 2: 366-385.Web of ScienceGoogle Scholar

  • Beckman R.J. (1973). An application of multivariate weighing designs. Communication in Statistics 1(6): 561-565.CrossrefGoogle Scholar

  • Box G.E., Hunter J.S., Hunter W.G. (2005). Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition. Wiley.Google Scholar

  • Ceranka B., Graczyk M. (2001): Optimum chemical balance weighing designs under the restriction on weighings. Discussiones Mathematicae-Probability and Statistics 21: 111-120.Google Scholar

  • Ceranka B., Graczyk M. (2003): Optimum chemical balance weighing designs for v+1 objects. Kybernetika 39: 333-340.Google Scholar

  • Ceranka B., Katulska K. (1987a): The application of the theory of spring balance weighing design for experiments with mixtures (in Polish). Listy Biometryczne XXIV(1): 17-26.Google Scholar

  • Ceranka B., Katulska K. (1987b): The application of the optimum spring balance weighing designs (in Polish). Siedemnaste Colloquium Metodologiczne z Agro- Biometrii: 98-108.Google Scholar

  • Ceranka B., Katulska K. (1989): Application of the biased spring balance weighing theory to estimation of differences of line effects for legume content. Biometrical Journal 31: 103-110.CrossrefGoogle Scholar

  • Ceranka B., Katulska K. (2001): A-optimal chemical balance weighing design with diagonal covariance matrix of errors. Moda 6, Advances in Model Oriented Design and Analysis, A.C. Atkinson, P. Hackl, W.G. Műller, eds., Physica-Verlag, Heidelberg, New York: 29-36.Google Scholar

  • Cheng C.S. (1980): Optimality of some weighing and n 2 fractional factorial designs. Annals of Statistics 8: 436-446.Web of ScienceCrossrefGoogle Scholar

  • Gawande B.N., Patkar A.Y. (1999): Application of factorial design for optimization of Cyclodextrin Glycosyltransferase production from Klebsiella pneumoniae pneumonaiae AS-22, Biotechnology and Bioengineering 64(2): 168-173.CrossrefGoogle Scholar

  • Glonek G.F.V., Solomon P.J. (2004): Factorial and time course designs for cDNA microarray experiments. Biostatistics 5: 89-111.CrossrefPubMedGoogle Scholar

  • Graczyk M. (2009): Regular A-optimal design matrices X=(xij) xij=-1, 0, 1. Statistical Papers 50: 789-795.Web of ScienceCrossrefGoogle Scholar

  • Graczyk M. (2011): A-optimal biased spring balance design. Kybernetika 47: 893-901.Google Scholar

  • Graczyk M. (2012a): Notes about A-optimal spring balance weighing design. Journal of Statistical Planning and Inference 142: 781-784.Web of ScienceGoogle Scholar

  • Graczyk M. (2012b): A-optimal spring balance weighing design under some conditions. Communication in Statistics-Theory and Methods 41: 2386-2393Google Scholar

  • Graczyk M. (2012c): Regular A-optimal spring balance weighing designs. Revstat 10(3): 1-11.Google Scholar

  • John P.W.M. (1971): Statistical Design and Analysis of Experiments. Macmillan, New York.Google Scholar

  • Katulska K. (1984): The application of the theory of weighing design for feeding mixtures investigations and in the geodesy (in Polish). Czternaste Colloquium Metodologiczne z Agro-Biometrii: 195-208.Google Scholar

  • Katulska K. (1989): Optimum biased spring balance weighing design. Statistics and Probability Letters 8: 267-271.CrossrefGoogle Scholar

  • Kiefer J. (1974): General equivalence theory for optimum designs. The Annals of Statistics 2: 849-879.CrossrefGoogle Scholar

  • Koukouvinos Ch. (1995): Optimal weighing designs and some new weighing matrices. Statistics and Probability Letters 25: 37-42.CrossrefGoogle Scholar

  • Koukouvinos Ch., Seberry J. (1997): Weighing matrices and their applications. Journal of Statistical Planning and Inference 62: 91-101.CrossrefGoogle Scholar

  • Montgomery D.C. (1991): Design and Analysis of Experiments. 3rd edition. John Wiley & Sons, New York.Google Scholar

  • Mukerjee R., Tang B. (2012): Optimal fractions of two-level factorials under a baseline parameterization. Biometrika 99(1): 71-84.CrossrefWeb of ScienceGoogle Scholar

  • Pukelsheim F. (1993): Optimal Design of Experiment. John Wiley & Sons, New York.Google Scholar

  • Sathe Y.S., Shenoy R.G. (1990): Construction method for some A- and D- optimal weighing designs when N ≡ 3(mod4). Journal of Statistical Planning and Inference 24: 369-375.CrossrefGoogle Scholar

  • Seta G., Mrówczyński M., Wachowiak H. (2000): Harmfulness and possibility of pollen beetle control with combined application of insecticides and foliar fertilisers (in Polish). Progress in Plant Protection/Postępy w Ochronie Roślin 40(2): 905-907.Google Scholar

  • Sloane N.J.A., Harwit M. (1976). Masks for Hadamard transform optics, and weighing designs. Applied Optics 15(1): 107-114.PubMedCrossrefGoogle Scholar

  • Yang Y.H., Speed T. (2002): Design issues for cDNA microarray experiments. Nature Genetics (Suppl.) 3: 579-588.Google Scholar

About the article

Published Online: 2013-06-05

Published in Print: 2013-06-01


Citation Information: Biometrical Letters, Volume 50, Issue 1, Pages 15–26, ISSN (Print) 1896-3811, DOI: https://doi.org/10.2478/bile-2013-0014.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in