Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
Online
ISSN
1896-3811
See all formats and pricing
More options …

Analysis of the relationship between coefficients of relatedness and molecular similarity of parental forms with respect to the heterosis effect in maize

Agnieszka Tomkowiak / Zbigniew Broda
  • Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Krzysztof Moliński
  • Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marta Molińska-Glura
  • Department and Laboratory of Computer Science and Statistics, Karol Marcinkowski University of Medicine in Poznań, Dąbrowskiego 79, 60-529 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Józef Adamczyk
Published Online: 2013-06-05 | DOI: https://doi.org/10.2478/bile-2013-0016

SUMMARY

Within the last twenty years studies have been conducted at many research centers with the aim of dividing breeding materials into heterotic groups based on molecular markers. Molecular techniques make it possible to study the genetic purity of inbred lines, determine their genetic variability and classify breeding materials for which no information is available on their origin. This study aims to investigate relationships between coefficients of relatedness (pedigree analysis) and molecular similarity estimated on the basis of AFLP and RAPD molecular markers, between parental forms of F1 maize hybrids. Determination of these relationships will make it possible to establish a hierarchy of importance for applied methods concerning selection of parental components for heterotic crossings based on the degree of relatedness and genetic similarity. As a result of the experiment it was shown that in the case of incomplete pedigree information, in the selection of parental components for crossings we may use information concerning molecular similarity determined using AFLP markers and the Jaccard index, which to the least degree differentiates matrices of AFLP and RAPD molecular similarity.

Keywords : relationship; molecular similarity; maize; AFLP; RAPD

  • Adamczyk J. (1998): A review of maize breeding methods and their practical applicability. Biul. IHAR 208: 123-130.Google Scholar

  • Adamczyk J. (2001): The role of new hybrids in enhancing efficiency of different utilisation systems of maize. Appendix to “Agro Serwis”. Biznes-Press. Warsaw: 7-12.Google Scholar

  • Ajmone Marsan P., Castiglioni P., Fusari F., Kuiper M., Motto M. (1998): Genetic diversity and its relationship to hybrid performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet. 96: 61-64.Google Scholar

  • Barciszewski J., Gunhil E., Siboska, Bent O., Pedersen Brian F.C., Clark Suresh I.S. Rattan. (1996): Evidence for the presence of kinetin in DNA and cell extracts. FEBS Letters 393: 197-200.Google Scholar

  • Becker H.C., Link W. (2000): Heterosis and hybrid breeding. MCC 2000 Mende: l-2.Google Scholar

  • Bernardo R. (1992): Relationship between single-cross performance and molecular marker heterozygosity. Theor. Appl. Genet. 83: 628-634. Centenary Congress: 319-327.Google Scholar

  • Dudley J.W., Saghai Maroot M.N., Rufener S.K. (1992): Molecular marker information and selection of parents in corn breeding programs Crop. Sci. 32: 301-304.Google Scholar

  • Dhillon B.S., Singh J. (1997): Combining ability and heterosis in diallele crosses in maize. Theor. Appl. Genet. 3: 117-122.Google Scholar

  • Henderson C. R. (1994): Estimation of changes in herd environment. J. Dairy Sci. 32: 706.Google Scholar

  • Jaccard P. (1901): Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37: 547-579.Google Scholar

  • Królikowski Z. (1977): Inheritance of some quantitative characters of maize under diallelic crossing. Genet. Pol. 1: 15-26.Google Scholar

  • Melehinger A.E., Lee M., Lamkey K.R., Woodman A. (1990): Genetic diversity for restriction fragment length polymorphism. Relation to estimated effects in maize inbreds. Crop Sci. 30: 1033-1040CrossrefGoogle Scholar

  • Nei M., and Li W. H. (1979): Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273.Google Scholar

  • Peng S., Yang J., Garcia F. V., Laza R.C., Visperas R.M., Sanico A. L., Chavez A. Q., Virmani S.S. (1998): Physiology-based crop management for yield maximization of hybrid rice. Advances in Hybrid Rice Technology, Proceedings of the 3rd International Symposium on Hybrid Rice 14-16 November 1996 Hyderabad India: 12-13.Google Scholar

  • Peng J. Y., Glaszmann J. C., Virmani S.S. (1988): Heterosis and isozyme divergence in Indica. Crop Science 28(3): 561-563.CrossrefGoogle Scholar

  • Phillips R.L., Visil J.K. (2001): DNA-Based Markers in Plants. Advances in Cellular and Molecular Biology of Plants 6: 125-131.Google Scholar

  • Rafalski A., Gidzińska M., Wiśniewska I. (1998): Systemy PCR w badaniach pokrewieństwa genetycznego linii kukurydzy [PCR systems in studies on genetic relationship in maize lines]. Biul. IHAR 208: 131-140.Google Scholar

  • Sprague G.F., Eberhardt S.A. (1997): Corn Breeding. In: Corn and Corn Improvement.Google Scholar

  • Spraque F.G. (ed.), Agron. Monog. 18., ASA, CSSA and SSSA, Madison, Wisconsin: 14.Google Scholar

  • Stuber C., Lincoln S.E., Wolff T., Helentiaris T. (1992): Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132: 823-839.Google Scholar

  • Sztuba-Solińska J. (2006): KOSMOS - problemy nauk biologicznych PTP 54: 227-239.Google Scholar

  • Thompson D., Henry R. (1995): Single step protocol for preparation of plant tissue for analysis by PCR. Biotechniques, 19: 394-400.Google Scholar

  • Tomkowiak A., Broda Z., Moliński K. (2010): Attempt to adapt a mathematical model for the heterosis effect in maize F1 hybrids depending on the genetic distance of parental forms. Plant Breeding and Seed Science IHAR 62: 72-89.Google Scholar

  • Tomkowiak A., Broda Z., Adamczyk J. (2009): Assessment of genetic diversity of corn lines suitable for breeding of heterosis hybrids, based on molecular markers AFLP and RAPD. ACTA Scientiarum Polonorum, Agricultura 8 (1): 69-82.Google Scholar

About the article

Published Online: 2013-06-05

Published in Print: 2013-06-01


Citation Information: Biometrical Letters, Volume 50, Issue 1, Pages 39–52, ISSN (Print) 1896-3811, DOI: https://doi.org/10.2478/bile-2013-0016.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in