Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
See all formats and pricing
More options …

Detection of outlying observations using the Akaike information criterion

Andrzej Kornacki
  • Corresponding author
  • Department of Applied Mathematics and Computer Science, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-10 | DOI: https://doi.org/10.2478/bile-2013-0022


For the detection of outliers (observations which are seemingly different from the others) the method of testing hypotheses is most often used. This approach, however, depends on the level of significance adopted by the investigator. Moreover, it can lead to the undesirable effect of “masking” of the outliers. This paper presents an alternative method of outlier detection based on the Akaike information criterion. The theory presented is applied to analysis of the results of beet leaf mass determination.

Keywords : outliers; entropy; Akaike information criterion; Dixon test; Grubbs test

  • Akaike H. (1973): Information theory and an extension of the maximum likelihood principle. 2nd International Symposium on Information Theory, eds. B.N. Petrv and F. Csaki, Budapest; Akademiai Kiado: 267-281.Google Scholar

  • Akaike H. (1977): On entropy maximization principle. Proc Symposium on Applications of Statistics, ed. P.R. Krishnaiah, Amsterdam: North Holland: 27-47. Barnett V., Lewis T. (1993): Outliers in Statistical Data. John Wiley & Sons.Google Scholar

  • Breuning M., Kriegel H.P, Sander J. (2000): LOF: Identifying Density-Based Local Outliers. In: Proceedings of the ACM SIGMOND Conference: 93-104.Google Scholar

  • David H.A. (1979): Pariadkowyje statistiki. Mockba Nauka.Google Scholar

  • Dzida K., Jarosz Z., Michalojć Z. (2011): The effect of diversified potassium fertilization on the field and chemical composition on Beta Vulgaris L. Acta Sci. Pol. Hortus. Cultus 10(40): 263-274.Google Scholar

  • Ellenberg J.H. (1976): Testing for a single outlier from a general linear regression. Biometrics 32: 637-645.PubMedCrossrefGoogle Scholar

  • Ferguson T.S. (1961): On the rejection of outliers. In Proc. Fourth Berkeley Symposium Math. Statist. Prob.1: 253-287.Google Scholar

  • Galpin J.S., Hawkins D.M. (1981): Rejection of a single outlier in two or three-way layouts. Technometrics 23: 65-70.Google Scholar

  • Grubbs F.E. (1950): Sample criteria for testing outlying observations. Ann. Math. Statist. 21: 27-58.Google Scholar

  • Grubbs F.E. (1969): Procedures for detecting outlying observations in samples. Technometrics 11: 1-21.CrossrefGoogle Scholar

  • Joshi P.C. (1972): Some slippage tests of mean for a single outlier in linear regression. Biometrika 59: 109-120.CrossrefGoogle Scholar

  • Karlin S., Traux D. (1960): Slippage problems. Ann. Math. Statist 31: 296-324.CrossrefGoogle Scholar

  • Pan J.X., Fang K.T. (1995): Multiple outlier detection in growth curve model with unstructured covariance matrix. Ann. Inst. Statist. Math. 47: 137-153.Google Scholar

  • Ramaswamy S., Rastogi R., Shim K. (2000): Efficient algorithms for mining outliers from large data sets. In: Proceedings of the ACM SIGMOND Conference on Management of data. Dallas: 427-438.Google Scholar

  • Rosseuw P., Leroy A. (2000): Robust Regression and Outlier Detection. John Wiley & Sons.Google Scholar

  • Sakamoto Y., Ishigura M. (1986): Akaike Information Criterion Statistics. Tokyo Reidel Publishing Company.Google Scholar

  • Schwager S.J., Margolin B.H. (1982): Detection of multivariate normal outliers. Ann. Statist. 10: 943-954.Google Scholar

  • Srivastava M.S., Von Rosen D. (1998): Outliers in Multivariate Regression Models. J. Mult. Anal. 65: 195-208.Google Scholar

  • Stefansky W. (1972): Rejecting outliers in factorial designs. Technometrics 14: 469-479 CrossrefGoogle Scholar

  • Tietjen G.L., Moore R.H. (1972): Some Grubbs-type statistics for the detection of several outliers. Technometrics 14: 583-597.CrossrefGoogle Scholar

  • Wilks S.S. (1963): Multivariate statistical outliers. Sankhya A. 25: 406-427. Google Scholar

About the article

Published Online: 2013-12-10

Published in Print: 2013-12-01

Citation Information: Biometrical Letters, Volume 50, Issue 2, Pages 117–126, ISSN (Print) 1896-3811, DOI: https://doi.org/10.2478/bile-2013-0022.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in