Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
Online
ISSN
1896-3811
See all formats and pricing
More options …

Survival probabilities for HIV infected patients through semi-Markov processes

Giovanni Masala / Giuseppina Cannas / Marco Micocci
Published Online: 2014-06-06 | DOI: https://doi.org/10.2478/bile-2014-0002

SUMMARY

In this paper we apply a parametric semi-Markov process to model the dynamic evolution of HIV-1 infected patients. The seriousness of the infection is rendered by the CD4+ T-lymphocyte counts. For this purpose we introduce the main features of nonhomogeneous semi-Markov models. After determining the transition probabilities and the waiting time distributions in each state of the disease, we solve the evolution equations of the process in order to estimate the interval transition probabilities. These quantities appear to be of fundamental importance for clinical predictions. We also estimate the survival probabilities for HIV infected patients and compare them with respect to certain categories, such as gender, age group or type of antiretroviral therapy. Finally we attach a reward structure to the aforementioned semi-Markov processes in order to estimate clinical costs. For this purpose we generate random trajectories from the semi-Markov processes through Monte Carlo simulation. The proposed model is then applied to a large database provided by ISS (Istituto Superiore di Sanità, Rome, Italy), and all the quantities of interest are computed.

Keywords : semi-Markov process; HIV states; waiting time distribution; evolution equation; survival probabilities; Monte Carlo simulation

References

  • Barbu V.S., Limnios N. (2008):Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications: Their Use in Reliability and DNA Analysis. Lecture Notes in Statistics N° 191, Springer, New York. DOI: 10.1007/978-0-387-73173-5.CrossrefGoogle Scholar

  • Brookmeyer R., Gail M.H. (1994): AIDS Epidemiology: a Quantitative Approach. Oxford University Press, New York.Google Scholar

  • Centres for Disease Control and Prevention (1993): Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recommendations and Reports, 41 N° RR-17: 1-19Google Scholar

  • Corradi G., Janssen J., Manca R. (2004):Numerical treatment of homogeneous semi- Markov processes in transient case-a straightforward approach. Methodology and Computing in Applied Probability 6: 233-246.Google Scholar

  • D’Amico G., Di Biase G., Janssen J., Manca R. (2011):HIV Evolution: A Quantification of the Effects Due to Age and to Medical Progress. Informatica 22 (1): 27-42.Google Scholar

  • Davidov O. (1999): The steady state probabilities for a regenerative semi-Markov processes with application to prevention and screening. Applied Stochastic Models and Data Analysis 15: 55-63.Google Scholar

  • Davidov O., Zelen M. (2000): Designing cancer prevention trials: a stochastic approach., Statistics in Medicine 19: 1983-1995.CrossrefGoogle Scholar

  • Di Biase G., D’Amico G., Di Girolamo A., Janssen J., Iacobelli S., Tinari N., Manca R. (2007a): Homogeneous semi-Markov model for predicting the HIV disease evolution: a case study. Far Edst. J. Math. Sci. (FJMS) 27: 89-109.Google Scholar

  • Di Biase G., D’Amico G., Di Girolamo A., Janssen J., Iacobelli S., Tinari N., Manca R. (2007b):A Stochastic Model for the HIV/AIDS Dynamic Evolution. Mathematical problem in Engineering Art. ID 65636, 14 pages. DOI: 10.1155/2007/65636.Google Scholar

  • Di Biase G., D’Amico G., Janssen J., Manca R. (2009): Patient’s Age Depending HIV/AIDS Evolution Analysis by means of a Non Homogeneous Semi-Markov Model. Advances and Applications in Statistics 11: 199-215. ISSN: 0972-3617.Google Scholar

  • Fischl M.A., Reichmann D.D., Grieco M.H. et al. (1987): The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS related complex. A double blind placebo-controlled trial. New England Journal of Medicine 317: 185-191.Google Scholar

  • Foucher Y., Mathieu E., Saint-Pierre P., Durand J.F., Daurès J.P. (2005): A semi- Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biometrical Journal 47: 825-833.CrossrefGoogle Scholar

  • Foucher Y. (2007): Modèles semi-markoviens: Application à l'analyse de l'évolution de pathologies chroniques.Doctoral dissertation, Université de Montpellier 1Google Scholar

  • Goedert J.J. (1990): Prognostic markers for AIDS. Annals of Epidemiology 1: 129-139.CrossrefGoogle Scholar

  • Goshu A.T., Dessie Z.G. (2013): Modelling Progression of HIV/AIDS Disease Stages Using Semi-Markov Processes. Journal of Data Science 11: 269-280.Google Scholar

  • Howard R.A. (1971a): Dynamic Probabilistic Systems, Markov Models. John Wiley & Sons Vol. 1, New York.Google Scholar

  • Howard R.A. (1971b): Dynamic Probabilistic Systems, Semi-Markov and Decision Processes. John Wiley & Sons Vol. 2, New York.Google Scholar

  • Iosifescu Manu A. (1972): Non homogeneous semi-Markov processes, Stud. Lere. Mat. 24: 529-533.Google Scholar

  • Jaffe H.W., Lifson A.R. (1988): Acquisition and transmission of HIV, Infectious Diseases Clinic of North America 2: 299-306.Google Scholar

  • Janssen J., Manca R. (2006): Applied Semi-Markov Processes. Springer, New York.Google Scholar

  • Joly P., Commenges D. (1999): A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to AIDS. Biometrics 55: 887-890.PubMedCrossrefGoogle Scholar

  • Lagakos S.W., Sommer C.J., Zelen M. (1978): Semi-Markov models for partially censored Data. Biometrika 65: 311-317.CrossrefGoogle Scholar

  • Levy P. (1954): Processus semi-markoviens. Proceedings of the International Congress of Mathematicians 3: 416-426, Erven P. Noordhoff N.V., Groningen, The Netherlands.Google Scholar

  • Levy J.A. (1993): Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57: 183-289.PubMedGoogle Scholar

  • Longini I.M., Clark J., Gardner W.S., Brundage J. (1991):The dynamics of CD4+ T lymphocyte decline in HIV infected individuals: A Markov modelling approach. Journal of Acquired Immunodeficiency Syndromes 4: 1141-1147.Google Scholar

  • Marshall A.H., Shaw B., McClean S.I. (2007): Estimating the costs for a group of geriatric patients using the Coxian phase-type distribution. Statistics in Medicine 26: 2716-2729.Web of ScienceCrossrefGoogle Scholar

  • Satten G.A., Sternberg M.R. (1999): Fitting semi-Markov models to interval-censored data with unknown initiation times. Biometrics 55: 507-513.PubMedCrossrefGoogle Scholar

  • Smith W.L. (1955): Regenerative stochastic processes. Proceedings of the Royal Society of London Series A. 232: 6-31.Google Scholar

  • Sternberg M.R., Satten S.A. (1999): Discrete-time nonparametric estimation for semi- Markov models of chain-of-events data subject to interval-censoring and truncation. Biometrics 55: 514-522.CrossrefPubMedGoogle Scholar

  • Sweeting M.J., De Angelis D., Aalen O.O. (2005): Bayesian back-calculation using a multi-State model with application to HIV. Statistics in Medicine 24: 3991-4007.CrossrefGoogle Scholar

  • Tsiatis A.A., Dafni U., De Gruttola V. et al. (1992): The relationship of CD4 counts over time to survival of patients with AIDS: Is CD4 a good surrogated marker? Jewell N., Dietz K. and Farewell V (eds.), AIDS Epidemiology: Methodological Issues, Boston, Birkhauser: 257-274.Google Scholar

  • UNAIDS/WHO AIDS Epidemic Update December 2006 (2006): available at http://www.unaids.org/en/HIV_data/epi2006/default.asp.Google Scholar

About the article

Published Online: 2014-06-06

Published in Print: 2014-06-01


Citation Information: Biometrical Letters, Volume 51, Issue 1, Pages 13–36, ISSN (Online) 1896-3811, DOI: https://doi.org/10.2478/bile-2014-0002.

Export Citation

© by Giovanni Masala. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in