Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biometrical Letters

The Journal of Polish Biometric Society

2 Issues per year

Open Access
Online
ISSN
1896-3811
See all formats and pricing
More options …

Statistical analysis of yield trials by AMMI analysis of genotype × environment interaction

Kuang Hongyu
  • Programa de Pos-graduação em Estatística e Experimentação Agronômica, Universidade de São Paulo, Brazil
  • Departamento de Estatística, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa, no 2367 - Bairro Boa Esperança. 78060-900, Cuiabá - MT - Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marisol García-Peña
  • Programa de Pos-graduação em Estatística e Experimentação Agronômica, Universidade de São Paulo, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lúcio Borges de Araújo / Carlos Tadeu dos Santos Dias
Published Online: 2014-12-20 | DOI: https://doi.org/10.2478/bile-2014-0007

Abstract

The genotype by environment interaction (GEI)) has an influence on the selection and recommendation of cultivars. The aim of this work is to study the effect of GEI and evaluate the adaptability and stability of productivity (kg/ha) of nine maize genotypes using AMMI model (Additive Main effects and Multiplicative Interaction). The AMMI model is one of the most widely used statistical tools in the analysis of multiple-environment trials. It has two purposes, namely understanding complex GEI and increasing accuracy. Nevertheless, the AMMI model is a widely used tool for the analysis of multiple-environment trials, where the data are represented by a two-way table of GEI means. In the complete tables, least squares estimation for the AMMI model is equivalent to fitting an additive two-way ANOVA model for the main effects and applying a singular value decomposition to the interaction residuals. It assumes equal weights for all GEI means implicitly. The experiments were conducted in twenty environments, and the experimental design was a randomized complete block design with four repetitions. The AMMI model identified the best combinations of genotypes and environments with respect to the response variable. This paper concerns a basic and a common application of AMMI: yield-trial analysis without consideration of special structure or additional data for either genotypes or environments.

Keywords: genotype environment interaction (GEI); adaptability and stability; additive main effects and multiplicative interaction model; multienvironment trials

References

  • Annicchiarico P. (1997): Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years. Theor. Appl. Genet. 94: 1072-1077.CrossrefGoogle Scholar

  • Annicchiarico P. (2002): Genotype × environment interaction: Challenges and opportunities for plant breeding and cultivar recommendations. Food and Agriculture Organization of the United Nations. FAO, Rome, Italy.Google Scholar

  • Arciniegas-Alarcn S., Garcia-Peña M., Dias C.T.S., Krzanowski W. J., (2010): An alternative methodology for imputing missing data in trials with genotypeby- environment interaction. Biometrical Letters 47: 1-14.Google Scholar

  • Cornelius P.L., Crossa J. (1999): Prediction assessment of shrinkage estimators of multiplicative models for multi-environment trials. Crop Science 39: 998-1009.CrossrefGoogle Scholar

  • Cornelius P.L., Seyedsar M., Crossa J. (1992): Using the shifted multiplicative model to search for “separability” in crop cultivar trials. Theoretical and Applied Genetics 84: 161-172.Google Scholar

  • Dias C.T.S., Krzanowski W.J. (2006): Choosing components in the additive main effect and multiplicative interaction (AMMI) models.Scientia Agricola 63: 169-175.Google Scholar

  • Dias C.T.S., Krzanowski W.J. (2003): Model selection and cross validation in additive main effect and multiplicative interaction models. Crop Science 43: 865-873.CrossrefGoogle Scholar

  • Falconer D.S., Mackay T.F.C. (1996): Introduction to quantitative genetics. 4nd ed. Edinburgh: Longman Group Limited.Google Scholar

  • Gabriel K.R. (1971): The biplot graphic display of matrices with application to principal components analysis. Biometrika 58: 453-467.CrossrefGoogle Scholar

  • García-Peña M., Dias C.T.S. (2009): Analysis of bivariate additive models with multiplicative interaction (AMMI). Biometric Brazilian Journal 27(4): 586-602.Google Scholar

  • Gauch H.G. (1988): Model selection and validation for yield trials with interaction. Biometrics 44(3): 705-715.CrossrefGoogle Scholar

  • Gauch H.G. (1992): Statistical analysis of regional yield trials: AMMI analysis of factorial designs. Elsevier, Amsterdam.Google Scholar

  • Gauch H.G. (2006): Statistical analysis of yield trials by AMMI and GGE. Crop Science 46: 1488-1500.Web of ScienceCrossrefGoogle Scholar

  • Gauch H.G. (2013): A Simple Protocol for AMMI Analysis of Yield Trials. Crop Science:(in press).Web of ScienceGoogle Scholar

  • Gauch H.G., Zobel R.W. (1988): Predictive and postdictive success of statistical analysis of yield trials. Theoretical and Applied Genetics 76: 1-10.Google Scholar

  • Gauch H.G., Zobel R.W. (1996): AMMI analysis of yield trials. In Genotype by environment interacrtion, pp. 85-122. Eds Kang M.S., Gauch H.G. New York, USA: CRC Press.Google Scholar

  • Gauch H.G.; Piepho H.P.; Annicchiarico P. (2008): Statistical analysis of yield trials by AMMI and GGE: Further considerations. Crop Sci. 48: 866-889.Web of ScienceCrossrefGoogle Scholar

  • Gauch H.G., Rodrigues P.C., Munkvold J.D., Heffner E.L., Sorrells M. (2011): Two New Strategies for Detecting and Understanding QTL × Environment Interactions. In Crop Sci 51: 96-113.CrossrefWeb of ScienceGoogle Scholar

  • Gollob H.F. (1968): A statistical model which combines feature of factor analitic and analysis of variance techniques. Psychometrika 33: 73-115.CrossrefGoogle Scholar

  • Piepho H. P. (1995): Robustness of statistical test for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials. Theoretical and Applied Genetics, 90(3/4): 438-443.Google Scholar

  • Rodrigues P.C., Malosetti M., Gauch H. G., Van Eeuwijk F.A. (2014): A weighted AMMI algorithm to study genotype-by-environment interaction and QTLby- environment interaction. Crop Science.Web of ScienceGoogle Scholar

  • Smith M.F., Gauch H.G. (1992): Effects of noise on AMMI and hierarchical classification analyses. South African Statist J. 26: 121-142.Google Scholar

  • SAS Institute. (2004): SAS/IML 9.1 User.s guide. Carey: SAS Institute Inc.Google Scholar

  • Yan W., Kang M.S., Ma B., Woods S., Cornelius P.L. (2007): GGE biplot vs.Google Scholar

  • AMMI analysis of genotype-by-environment data. Crop Sci. 47: 643-655.Web of ScienceGoogle Scholar

  • Yang R. C., Crossa J., Cornelius P.L., Burgueño J. (2009): Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci. 49: 1564-1576.CrossrefGoogle Scholar

  • Yan W. (2010): Optimal Use of Biplots in Analysis of Multi-Location Variety Test Data. Acta Agronomica Sinica, 36 (11): 1805-1819. Google Scholar

About the article

Published Online: 2014-12-20

Published in Print: 2014-12-01


Citation Information: Biometrical Letters, Volume 51, Issue 2, Pages 89–102, ISSN (Online) 1896-3811, DOI: https://doi.org/10.2478/bile-2014-0007.

Export Citation

© by Kuang Hongyu. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ammar Elakhdar, Toshihiro Kumamaru, Kevin P. Smith, Robert S. Brueggeman, Ludovic J.A. Capo-chichi, and Shyam Solanki
Journal of Crop Science and Biotechnology, 2017, Volume 20, Number 3, Page 193
[2]
Priscila Neves Faria, Carlos Tadeu dos Santos Dias, José Baldin Pinheiro, Lúcio Borges de Araújo, Marcelo Ângelo Cirillo, and Mirian Fernandes Carvalho Araújo
Revista Ceres, 2016, Volume 63, Number 4, Page 461
[3]
Williams Esuma, Robert Sezi Kawuki, Liezel Herselman, and Maryke Tine Labuschagne
Breeding Science, 2016, Volume 66, Number 3, Page 434

Comments (0)

Please log in or register to comment.
Log in