Jump to ContentJump to Main Navigation
Show Summary Details

Structure-property relationships in mechanically stimulated Sorghum bicolor stalks

Marie-Louise Lemloh / Anna Pohl / Eva Weber
  • INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbruecken, Germany
  • Department of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion Israel Institute of Technology, Haifa 32000, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marco Zeiger / Petra Bauer
  • Saarland University, Department of Biosciences - Plant Biology, Campus A2 4, 66123 Saarbruecken, Germany
  • Heinrich Heine University, Institute of Botany, Universitaetsstr. 1, 40225 Duesseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ingrid M. Weiss / Andreas S. Schneider
Published Online: 2014-09-30 | DOI: https://doi.org/10.2478/bima-2014-0001


Mechanical properties of plants and underlying structure-property relationships are important for agricultural purposes as well as for biomimetic concepts. In this study, the effect of mechanical stimulation on morphology and bending properties of the stalk was investigated for Sorghum bicolor (Poaceae), a widely used drought-tolerant biomass grass. An experimental set-up allowing for defined growth and mechanical perturbation (flexing) during a defined growth period was designed. Mechanical properties of individual internodes of the stalk were determined by three-point bending tests. We found that the three investigated lines showed differences in their general bending strength in the non-stimulated condition. However, similar high range of bending strength values was measured for all plant lines after they underwent the mechanical stimulation procedure. The anatomy of internode cross-sections was examined to evaluate structure-property relationships. An increased thickness of the outer sclerenchymatous tissue was observed for internodes with higher bending strength values. Dried internodes fail under lower strains but showed higher bending strength. These findings show that mechanosensitivity in sorghum is dependent on genetic as well as environmental factors. The experimental system presented here offers new straight-forward possibilities for S. bicolor line selection for applications requiring mechanical strength of the stalk.

Keywords : Poaceae; Sorghum bicolor; stalk; internode; mechanical properties; three-point bending; bending strength; thigmomorphogenesis; mechanical stimulation; sclerenchyma


  • [1] Smith C.W., Sorghum Production Statistics, In: Smith C.W., Frederiksen R.A. (Eds.), Sorghum Origin, History, Technology and Production, John Wiley & Sons, Inc., New York, 2000 Google Scholar

  • [2] Hancock J.D., Value of Sorghum and Sorghum CoProducts in Diets for Lifestock, In: Smith C.W., Frederiksen R.A. (Eds.), Sorghum Origin, History, Technology and Production, John Wiley & Sons, Inc., New York, 2000 Google Scholar

  • [3] Paterson A.H., Bowers J.E., Bruggmann R., Dubchak I., Grimwood J., Gundlach H., Haberer G., Hellsten U., Mitros T., Poliakov A., et al., The Sorghum bicolor genome and the diversification of grasses, Nature, 2009, 457, 551-556. Web of ScienceGoogle Scholar

  • [4] Rooney L.W., Waniska R.D., Sorghum Food and Industrial Utilization, In: Smith C.W., Frederiksen R.A. (Eds.), Sorghum Origin, History, Technology and Production, John Wiley & Sons, Inc., New York, 2000 Google Scholar

  • [5] Pedersen J.F., Fritz J.O., Forages and Fodder, In: Smith C.W., Frederiksen R.A. (Eds.), Sorghum Origin, History, Technology and Production, John Wiley & Sons, Inc., New York, 2000 Google Scholar

  • [6] Berry P., Spink J., Sylvester-Bradley R., Pickett A., Sterling M., Baker C., Cameron N., Lodging control through variety choice and management, Proceedings of the eighth home-grown cereals authority R&D conference on cereals and oilseeds, (2002, London), HGCA, 2002, 7.1-7.12. Google Scholar

  • [7] Kashiwagi T., Ishimaru K., Identification and functional analysis of a locus for improvement of lodging resistance in rice, Plant Physiol., 2004, 134, 676-683. Google Scholar

  • [8] Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A., Plant cell walls: from chemistry to biology, Garland Science, Taylor and Francis Group, LLC, New York, 2010. Google Scholar

  • [9] Karam G.N., Gibson L.J., Biomimicking of animal quills and plant stems: natural cylindrical shells with foam cores, Mater. Sci. Eng. C, 1994, 2, 113-132. Google Scholar

  • [10] Karam G.N., Gibson L.J., Elastic buckling of cylindrical shells with elastic cores—I. Analysis, Int. J. Solids Struct., 1995, 32, 1259-1283. Google Scholar

  • [11] Gibson L.J., The hierarchical structure and mechanics of plant materials, J. Royal Soc. Interface, 2012, 9, 2749-2766. CrossrefWeb of ScienceGoogle Scholar

  • [12] Braam J., In touch: plant responses to mechanical stimuli, New Phytol., 2005, 165, 373-389. Google Scholar

  • [13] Jaffe M.J., Thigmomorphogenesis: the response of plant growth and development to mechanical stimulation, Planta, 1973, 114, 143-157. Google Scholar

  • [14] Jaffe M.J., Leopold A.C., Staples R.C., Thigmo responses in plants and fungi, Am. J. Bot., 2002, 89, 375-382. Web of ScienceGoogle Scholar

  • [15] Speck T., Burgert I., Plant Stems: Functional Design and Mechanics, Annu. Rev. Mater. Res., 2011, 41, 169-193. Google Scholar

  • [16] Chung K.F., Chan S.L., Mechanical properties and engineering data of structural bamboo, In: Chung K.F., Chan S.L. (Eds.), Proceedings of International Seminar ‘Bamboo Scaffolds in Building Construction’, (11 May 2002, Hong Kong), Hong Kong Polytechnic University INBAR, 2002, 1 - 24. Google Scholar

  • [17] Speck O., Spatz H.-C., Damped oscillations of the giant reed Arundo donax (Poaceae), Am. J. Bot., 2004, 91, 789-796. Google Scholar

  • [18] Spatz H.-C., Beismann H., Brüchert F., Emanns A., Speck T., Biomechanics of the giant reed Arundo donax, Philos. Trans. R. Soc. Lond. B Biol. Sci., 1997, 352, 1-10. Google Scholar

  • [19] Mittal J.P., Oke B.O., Kaul R.N., A note on the deflection characteristics of sorghum stalks, Agricultural Wastes, 1985, 13, 59-68. Google Scholar

  • [20] Chattopadhyay P.S., Pandey K.P., Mechanical Properties of Sorghum Stalk in relation to Quasi-static Deformation, J. Agr. Eng. Res., 1999, 73, 199-206. Google Scholar

  • [21] Bakeer B., Taha I., El-Mously H., Shehata S.A., On the characterisation of structure and properties of sorghum stalks, Ain Shams Engineering Journal, 2013, 4, 265-271. Google Scholar

  • [22] Telewski F.W., Jaffe M.J., Thigmomorphogenesis: anatomical, morphological and mechanical analysis of genetically different sibs of Pinus taeda in response to mechanical perturbation, Physiol. Plant, 1986, 66, 219-226. Google Scholar

  • [23] Hepworth D.G., Vincent J.F.V., The Growth Response of the Stems of Genetically Modified Tobacco Plants (Nicotiana tabacum‘Samsun’) to Flexural Stimulation, Ann. Bot., 1999, 83, 39-43. Google Scholar

  • [24] Tavakoli H., Mohtasebi S., Jafari A., Physical and mechanical properties of wheat straw as influenced by moisture content, Int. Agrophys., 2009, 23, 175-181. Google Scholar

  • [25] Coutand C., Martin L., Leblanc-Fournier N., Decourteix M., Julien J.-L., Moulia B., Strain Mechanosensing Quantitatively Controls Diameter Growth and PtaZFP2 Gene Expression in Poplar, Plant Physiol., 2009, 151, 223-232. Web of ScienceGoogle Scholar

  • [26] Spielmeyer W., Ellis M.H., Chandler P.M., Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene, PNAS, 2002, 99, 9043-9048. Google Scholar

About the article

Received: 2014-02-20

Accepted: 2014-08-08

Published Online: 2014-09-30

Citation Information: Bioinspired Materials, Volume 1, Issue 1, ISSN (Online) 2300-3634, DOI: https://doi.org/10.2478/bima-2014-0001.

Export Citation

© 2014 Marie-Louise Lemloh et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in