Jump to ContentJump to Main Navigation
Show Summary Details

Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics

Marcin Wysokowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Iaroslav Petrenko
  • Corresponding author
  • Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mykhailo Motylenko
  • Corresponding author
  • Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrico Langer
  • Corresponding author
  • Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vasilii V. Bazhenov
  • Corresponding author
  • Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roberta Galli
  • Corresponding author
  • Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscher str. 74, 01307 Dresden, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Allison L. Stelling
  • Corresponding author
  • Center for Materials Genomics, Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zoran Kljajić
  • Corresponding author
  • Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomasz Szatkowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valentine Z. Kutsova
  • Corresponding author
  • National Metallurgical Academy of Ukraine, Department of Materal Sciene the Name U.N. Taran-Zhovnir, Gagarina avenue 4, 49600Dnipropetrovsk, Ukraine
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dawid Stawski
  • Corresponding author
  • Department of Commodity and Material Sciences and Textile Metrology, Technical University of Lódź, Żeromskiego 116, 90924 Lódź, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Teofil Jesionowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/bima-2015-0001


Chitin originating from marine sponges possesses a unique nanofibrillar network structure that is the basic element of the microtubular scaffold-like skeleton of these organisms. Sponge chitin represents an intriguing example of thermostability, as it is stable up to 400 °C. It also constitutes a renewable biological source due to the high regeneration ability of Aplysina sponges under marine farming conditions. These properties can be exploited for the facile and environmentally friendly creation of novel, biocompatible organic-inorganic hybrid materials with a range of uses. Here, chitin-based scaffolds isolated from the skeleton of marine demosponge Aplysina aerophoba were used as a template for the in vitro formation of iron oxide from a saturated iron(III) chloride solution, under hydrothermal conditions (pH~1.5, 90 °C). The resultant chitin-Fe2O3 three dimensional composites, prepared for the first time via hydrothermal synthesis route, were thoroughly characterized using light, fluorescence and scanning electron microscopy; as well as with analytical methods like Raman spectroscopy, electron diffraction and HR-TEM. The results show that this versatile method allows for efficient chitin mineralization with respect to hematite. Additionally, we demonstrate that chitin nanofibers template the nucleation of uniform Fe2O3 nanocrystals.

Keywords : chitin; sponges; extreme biomimetics; hematite; hydrothermal synthesis; Calcofluor white


  • [1] Xu A.-W., Ma Y., Cölfen H., Biomimetic mineralization, J. Mater. Chem., 2007, 17, 415-449. CrossrefGoogle Scholar

  • [2] Ehrlich H., Chitin and collagen as universal and alternative templates in biomineralization, Int. Geol. Rev., 2010, 52, 661-699. CrossrefGoogle Scholar

  • [3] Sanchez C., Arribart H., Guille M.M.G., Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater., 2005, 4, 277-288. CrossrefGoogle Scholar

  • [4] Nudelman F., Sommerdijk N., Biomineralization as an inspiration for materials chemistry. Angew. Chemie Int. Ed., 2012, 51, 6582-6596. CrossrefGoogle Scholar

  • [5] Wysokowski M., Motylenko M., Bazhenov V.V., Stawski D., Petrenko I., Ehrlich A., et al., Poriferan chitin as a template for hydrothermal zirconia deposition, Front. Mater. Sci., 2013, 7, 248-260. CrossrefGoogle Scholar

  • [6] Ehrlich H., Simon P., Motylenko M., Wysokowski M.,Bazhenov V.V., Galli R., et al., Extreme Biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions, J. Mater. Chem. B., 2013, 1, 5092-5099. CrossrefGoogle Scholar

  • [7] Wysokowski M., Motylenko M., Stöcker H., Bazhenov V.V., Langer E., Dobrowolska A., et al., An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites, J. Mater. Chem. B., 2013, 1, 6469-6476. CrossrefGoogle Scholar

  • [8] Wysokowski M., Piasecki A., Bazhenov V.V., Paukszta D., Born R., Schupp P., et al., Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions, J. Chitin Chitosan Sci., 2013, 1, 26-33. Google Scholar

  • [9] Wysokowski M., Behm T., Born R., Bazhenov V.V., Meiβner H., Richter G., et al., Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions, Mater. Sci. Eng. C., 2013, 33, 3935-3941. CrossrefGoogle Scholar

  • [10] Suzuki Y., Kopp R., Kogure T., Suga A., Takai K., Tsuhida S., et al., Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod—possible control of iron sulfide biomineralization by the animal, Earth Planet. Sci. Lett., 2006, 242, 39-50. Google Scholar

  • [11] Cook T.L., Stakes D.S., Biogeological mineralization in deep-sea hydrothermal deposits, Science, 1995, 267, 1975-1979. Google Scholar

  • [12] Jun F., Jianghai L.I., Fengyou C.H.U., A study of the microbial mineralization in submarine black smoker chimneys from the Okinawa Trough, Acta. Oceanol. Sin., 2009, 28, 87-95. Google Scholar

  • [13] Tivey M.K., The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: Insights from modeling transport and reaction, Geochim. Cosmochim. Acta., 1995, 59, 1933-1949. CrossrefGoogle Scholar

  • [14] Fortin D., Chatellier X. Biogenic iron oxides In: Pandalai, S.G. (Ed.), Recent Research Developments in Mineralogy, vol. 3. Research Signpost, Trivandrum, Kerala, 2003. Google Scholar

  • [15] Fortin D., Langley S., Formation and occurrence of biogenic iron-rich minerals. Earth-Sci. Rev., 2005, 72, 1-19. CrossrefGoogle Scholar

  • [16] Lowenstam H.A., Goethite in radular teeth of recent marine gastropods. Science, 1962, 137, 279-280. Google Scholar

  • [17] Ehrlich H., Biological materials of marine origin, Springer Science+Business Media B.V., Dordrecht, 2010. Google Scholar

  • [18] Gilbert P.U.P.A., Abrecht M., Frazer B.H., The organic-mineral interface in biominerals. Rev. Mineral. Geochem. 2005, 59, 157-185. CrossrefGoogle Scholar

  • [19] Cabral A.R., Koglin N., Seabra Gomes Jr A.A., Lehamnn B., Xenotime-hematite aggregates on opaline filaments: evidence for biomineralization in weathered siliciclastic rocks, Capanema, Quadrilatero Ferrifero of Minas Gerais, Brazil. Int. J. Earth Sci., 2012, 101, 377-383. CrossrefGoogle Scholar

  • [20] Hawkes J.A., Connelly D.P., Gledhill M., Achtenberg E.P., The stabilization and transportation of dissolved iron from high temperature hydrothermal vents. Earth Planet. Sci. Lett., 2013, 375, 280-290. Google Scholar

  • [21] Kilias S.P., Nomikou P., Papanikolaou D., Polymenakou P.N., Godelitsas A., Argyraki A., et al., New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece., Sci. Rep., 2013, 2, 2421. Google Scholar

  • [22] Yücel M., Gartman A., Chan C.S., Luther G.W., Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci., 2011, 4, 367-371. CrossrefGoogle Scholar

  • [23] Kennedy C.B., Scott S.D., Ferris F.G., Hydrothermal phase stabilization of 2 line ferrihydrite by bacteria. Chem. Geol. 2004, 212, 269-277. Google Scholar

  • [24] Li M., Toner B.M., Baker B.J., Breier J.A., Sheik C.S., Dick G.J., Microbal iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat. Comm., 2014, 5, 3192. Google Scholar

  • [25] Zvarec O., Purushotham S., Masic A., Ramanujan R.V., Miserez A., Catechol-functionalized chitiosan/iron oxide nanopatricle composite inspired by mussel thread coating and squid beak interfacial chemistry. Langmuir, 2013, 29, 10899-10906. CrossrefGoogle Scholar

  • [26] Ehrlich H., Ilan M., Maldonado M., Muricy G., Bavestrelllo G., Kljajic Z., et al., Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int. J. Bol. Macromol. 2010, 47, 132-140. CrossrefGoogle Scholar

  • [27] Wysokowski M., Bazhenov V.V., Tsurkan M.V., Galli R., Stelling A.L., Stöcker H., et al., Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int. J. Biol. Macromol. 2013, 62, 94-100. CrossrefGoogle Scholar

  • [28] Cruz-Barraza J.A., Carballo J.L., Rocha-Olivares A., Ehrlich H., Hog. M., Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific, PLoS One., 2012, 7, e42049. Google Scholar

  • [29] Michailovski A., Patzke G.R., Hydrothermal synthesis of molybdenium oxide based materials: strategy ans structural chemistry. Chem. Eur. J., 2006, 12, 9122-9134. CrossrefGoogle Scholar

  • [30] Geisberger G., Paulus S., Carraro M., Bonchio M., Patzke G.R., Synthesis, characterization and cytotoxicity of polyoxometalate/ carboxymethyl chitosan nanocomposites, Chem. Eur. J. 2011, 17, 4619-4625. CrossrefGoogle Scholar

  • [31] Rabenau B.A., The role of hydrothermal synthesis in preparative chemistry, Angew. Chemie. Int. Ed., 1985, 24, 1026-1040. CrossrefGoogle Scholar

  • [32] Namratha K., Byrappa K., Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals, Prog. Cryst. Growth Charact. Mater., 2012, 58, 14-42. CrossrefGoogle Scholar

  • [33] Riman R., Suchanek W., Lencka M., Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Des. Matériaux., 2002, 27, 15-36. CrossrefGoogle Scholar

  • [34] Kaszewski J., Yatsunenko S., Pełech I., Mijowska E., Narkiewicz U., Godlewski M., High pressure synthesis versus calcination – different approaches to crystallization of zirconium dioxide, Polish. J. Chem. Technol., 2014, 16, 99-105. Google Scholar

  • [35] Anitha A., Sowmya S., Sundheesh Kumar P.T., Deepthi S., Chennazhi K.P., Ehrlich H., et al., Chitin and chitosan in selected biomedical applications. Prog. Polymer Sci., 2014, 39, 1644-1667. CrossrefGoogle Scholar

  • [36] Ehrlich H., Steck E., Ilan M., Maldonado M., Muricy G., Bavestrello G., et al., Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications, Int. J. Biol. Macromol. 2010, 47, 141–145. CrossrefGoogle Scholar

  • [37] Konhauser K.O., Jones B., Microbal silicification – bacteria (or passive), In: Reitner J., Thiel V. (Eds.), Encyclopedia of Geobiology, Springer, Dordecht, 2011 Google Scholar

  • [38] Ouyang J., Pei J., Kuang Q., Xie Z., Zheng L., Supersaturationcontrolled shape evolution of α-Fe2O3 nanocrystals and their facet dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces, 2014, 6, 12505-12514. CrossrefGoogle Scholar

  • [39] Elorza M.V., Rico H., Sentandreu R., Calcofluor White alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells, J. Gen. Microbiol., 1983, 129, 1577-1582. Google Scholar

  • [40] Herth W., Schnepf E., The fluorochrome, Calcofluor White, binds oriented to structural polysaccharide fibrils, Protoplasma, 1980, 105, 129-133. Google Scholar

  • [41] Ehrlich H., Krautter M., Hanke T., Simon P., Knieb C., Heinemann S., et al., First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges. (Hexactinellida: Porifera), J. Exp. Zool. Part B., 2007, 308B, 473-483. Google Scholar

  • [42] Ehrlich H., Maldonado M., Spindler K., Eckert C., Hanke T., Born R., et al., First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera), J. Exp. Zool. Part B., 2007, 356, 347–356. Google Scholar

  • [43] Wysokowski M., Zatoń M., Bazhenov V.V., Behm T., Ehrlich A., Stelling A.L., et al., Identification of chitin in 200-million-yearold gastropod egg capsules, Paleobiology, 2014, 40, 529–540. CrossrefGoogle Scholar

  • [44] Ehrlich H., Rigby J.K., Botting J.P., Tsurkan M., Werner C., Schwille P., et al., Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta, Sci. Rep. 2013, 3, 3497. Google Scholar

  • [45] Ehrlich H., Kaluzhnaya O.V., Brunner E., Tsurkan M.V., Ereskovsky A., Ilan M., et al., Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J. Struct. Biol., 2013, 183, 474-483. Google Scholar

  • [46] Ehrlich H., Kaluzhnaya O.V., Tsurkan M.V., Ereskovsky A., Tabachnick K.R., Ilan M., et al., First report on chitinous holdfast in sponges (Porifera), Proc. R. Soc. B, 2013, 280, 20130339. Google Scholar

  • [47] Niu L.-n., Jiao K., Qi Y.-p., Yiu C.K.Y., Ryou H., Arola D.D., et al., Infiltration of silica inside fibrillar collagen, Angew. Chem. Int. Ed., 2011, 50, 11688-11691. CrossrefGoogle Scholar

  • [48] Zhou B., Niu L.-n., Shi W., Zhang W., Arola D.D., Breschi L., et al., Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into threedimensional collagen scaffolds, Adv. Funct. Mater., 2013, 24, 1895-1903. Google Scholar

  • [49] Munro N.H., Green D.W., Dangerfield A., McGrath K.M., Biomimetic mineralisation of polymeric scaffolds using combined soaking and Kitano approach, Dalton Trans., 2011, 40, 9259-9268. Google Scholar

  • [50] de Faria D.L.A., Lopes F.N., Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?, Vib. Spectrosc., 2007, 45, 117-121. Google Scholar

  • [51] Ma M.-G., Zhu J.-F., Li S.-M., Jia N., Sun R.-C. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behawior and thermal stability. Mater. Sci. Eng. C, 2012, 1511-1517. CrossrefGoogle Scholar

  • [52] Caudron E., Tfayli A., Monnier C., Manfait M., Prognon P., Pradeau D., Identification of hematite particles in sealed glass containers for pharmaceutical uses by Raman microspectroscopy, J. Pharm. Biomed. Anal., 2011, 54, 866-868. CrossrefGoogle Scholar

  • [53] Froment F., Tournié A., Colomban P., Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J. Raman Spectrosc., 2008, 39, 560-568. CrossrefGoogle Scholar

  • [54] Ogasawara W., Shenton W., Davis S.A., Mann S., Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chem. Mater. 2011, 23, 2973-2978. Google Scholar

  • [55] Spinde K., Kammer M., Freyer K., Ehrlich H., Vournakis J.N., Brunner E., Biomimetic silicification of fibrous chitin from diatoms, Chem. Mater., 2011, 23, 2973-2978. CrossrefGoogle Scholar

  • [56] Fang X.-L., Chen C., Jin M.-S., Kuang Q., Xie Z.-X., Xie S.-Y. et al., Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem., 2009, 19,6154-6160. CrossrefGoogle Scholar

  • [57] Van T.-K., Cha H.G., Nguyen C.K., Kim S.-W., Jung M.-H., Kang Y.S., Nanocystals of hematite with unconventional shapetruncated hexagonal bipyramid and its optical and magnetic properties, Cryst. Growth Des., 2012, 12, 862-868. CrossrefGoogle Scholar

  • [58] Cornell R., Schwertmann U., The iron oxides – structure, properties, occurences and uses. 2nd ed., Wiley-VCH Verlag, Weinheim, 2003. Google Scholar

  • [59] Yue Z.-G., Wei W., You Z.-X., Yang Q.-Z., Yue H., et al., Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs, Adv. Funct. Mater., 2011, 21, 3446-3454. CrossrefGoogle Scholar

  • [60] Li J., He Y., Sun W., Luo Y., Cai H., Pan Y., Shen M., Xia J., Shi X., Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 2014, 35, 3666-3677. CrossrefGoogle Scholar

  • [61] Gong J., Wang L., Zhao K., Song D., One-step fabrication of chitosan–hematite nanotubes composite film and its biosensing for hydrogen peroxide, Electrochem. Commun., 2008, 10, 123-126. CrossrefGoogle Scholar

  • [62] Lu X., Zeng Y., Yu M., Zhai T., Liang C., Xie S., et al., Oxygendeficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors, Adv. Mater., 2014, 26, 3148-3155. CrossrefGoogle Scholar

  • [63] Ren T., He P., Niu W., Wu Y., Ai L., Gou X., Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ. Sci. Pollut. Res. 2013, 20, 155-162. CrossrefGoogle Scholar

  • [64] Pehlivan E., Tran H.T., Ouerdraogo W.K., Schmidt C., Zachmann D., Bahadir M., Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem. 2013, 133-138. CrossrefGoogle Scholar

  • [65] Huang C.L., Zhang H.Y., Sun Z.Y., Liu Z.M., Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane, Sci. China Chem., 2010, 53, 1502-1508. CrossrefGoogle Scholar

  • [66] Yu J., Yu X., Huang B., Zhang X., Dai Y., Hydrothermal synthesis ad visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth. Des.,2009, 9, 1474-1480. CrossrefGoogle Scholar

  • [67] Fei X., Shao Z., Chen X., Hematite nanostructures by a silk fibroin-assisted hydrothermal method, J. Mater. Chem. B., 2013, 1, 213-220. Google Scholar

About the article

Received: 2014-10-22

Accepted: 2014-12-17

Published Online: 2015-02-06

Citation Information: Bioinspired Materials, Volume 1, Issue 1, ISSN (Online) 2300-3634, DOI: https://doi.org/10.1515/bima-2015-0001.

Export Citation

© 2015 Marcin Wysokowski et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Anna Ilnicka and Jerzy Lukaszewicz
Marine Drugs, 2018, Volume 16, Number 5, Page 142
Teofil Jesionowski, Małgorzata Norman, Sonia Żółtowska-Aksamitowska, Iaroslav Petrenko, Yvonne Joseph, and Hermann Ehrlich
Marine Drugs, 2018, Volume 16, Number 3, Page 88
Trang The Lieu Chau, Dung Quang Tien Le, Hoa Thi Le, Cuong Duc Nguyen, Long Viet Nguyen, and Thanh-Dinh Nguyen
ACS Applied Materials & Interfaces, 2017
Tomasz Szatkowski, Katarzyna Siwińska-Stefańska, Marcin Wysokowski, Allison Stelling, Yvonne Joseph, Hermann Ehrlich, and Teofil Jesionowski
Biomimetics, 2017, Volume 2, Number 2, Page 4
T. Vasilieva, A. Sigarev, D. Kosyakov, N. Ul’yanovskii, E. Anikeenko, D. Chuhchin, A. Ladesov, Aung Myat Hein, and V. Miasnikov
Carbohydrate Polymers, 2017, Volume 163, Page 54
Murat Kaya, Bahar Akyuz, Esra Bulut, Idris Sargin, Gamze Tan, Demet Erdonmez, Mansi Maheta, Saulius Satkauskas, and Saulius Mickevičius
Carbohydrate Polymers, 2016, Volume 146, Page 80

Comments (0)

Please log in or register to comment.
Log in