Jump to ContentJump to Main Navigation
Show Summary Details

Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics

Marcin Wysokowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
/ Iaroslav Petrenko
  • Corresponding author
  • Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany
/ Mykhailo Motylenko
  • Corresponding author
  • Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, 09599 Freiberg Germany
/ Enrico Langer
  • Corresponding author
  • Institut für Halbleiter- und Mikrosystemtechnik, Technische Universität Dresden, 01062 Dresden
/ Vasilii V. Bazhenov
  • Corresponding author
  • Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany
/ Roberta Galli
  • Corresponding author
  • Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscher str. 74, 01307 Dresden, Germany
/ Allison L. Stelling
  • Corresponding author
  • Center for Materials Genomics, Department of Mechanical Engineering and Materials Science, Duke University, 27708 Durham, NC, USA
/ Zoran Kljajić
  • Corresponding author
  • Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro
/ Tomasz Szatkowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
/ Valentine Z. Kutsova
  • Corresponding author
  • National Metallurgical Academy of Ukraine, Department of Materal Sciene the Name U.N. Taran-Zhovnir, Gagarina avenue 4, 49600Dnipropetrovsk, Ukraine
/ Dawid Stawski
  • Corresponding author
  • Department of Commodity and Material Sciences and Textile Metrology, Technical University of Lódź, Żeromskiego 116, 90924 Lódź, Poland
/ Teofil Jesionowski
  • Corresponding author
  • Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4 , 60965 Poznań, Poland
Published Online: 2015-02-06 | DOI: https://doi.org/10.1515/bima-2015-0001


Chitin originating from marine sponges possesses a unique nanofibrillar network structure that is the basic element of the microtubular scaffold-like skeleton of these organisms. Sponge chitin represents an intriguing example of thermostability, as it is stable up to 400 °C. It also constitutes a renewable biological source due to the high regeneration ability of Aplysina sponges under marine farming conditions. These properties can be exploited for the facile and environmentally friendly creation of novel, biocompatible organic-inorganic hybrid materials with a range of uses. Here, chitin-based scaffolds isolated from the skeleton of marine demosponge Aplysina aerophoba were used as a template for the in vitro formation of iron oxide from a saturated iron(III) chloride solution, under hydrothermal conditions (pH~1.5, 90 °C). The resultant chitin-Fe2O3 three dimensional composites, prepared for the first time via hydrothermal synthesis route, were thoroughly characterized using light, fluorescence and scanning electron microscopy; as well as with analytical methods like Raman spectroscopy, electron diffraction and HR-TEM. The results show that this versatile method allows for efficient chitin mineralization with respect to hematite. Additionally, we demonstrate that chitin nanofibers template the nucleation of uniform Fe2O3 nanocrystals.

Keywords : chitin; sponges; extreme biomimetics; hematite; hydrothermal synthesis; Calcofluor white


  • [1] Xu A.-W., Ma Y., Cölfen H., Biomimetic mineralization, J. Mater. Chem., 2007, 17, 415-449. [Crossref]

  • [2] Ehrlich H., Chitin and collagen as universal and alternative templates in biomineralization, Int. Geol. Rev., 2010, 52, 661-699. [Crossref]

  • [3] Sanchez C., Arribart H., Guille M.M.G., Biomimetism and bioinspiration as tools for the design of innovative materials and systems, Nat. Mater., 2005, 4, 277-288. [Crossref]

  • [4] Nudelman F., Sommerdijk N., Biomineralization as an inspiration for materials chemistry. Angew. Chemie Int. Ed., 2012, 51, 6582-6596. [Crossref]

  • [5] Wysokowski M., Motylenko M., Bazhenov V.V., Stawski D., Petrenko I., Ehrlich A., et al., Poriferan chitin as a template for hydrothermal zirconia deposition, Front. Mater. Sci., 2013, 7, 248-260. [Crossref]

  • [6] Ehrlich H., Simon P., Motylenko M., Wysokowski M.,Bazhenov V.V., Galli R., et al., Extreme Biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions, J. Mater. Chem. B., 2013, 1, 5092-5099. [Crossref]

  • [7] Wysokowski M., Motylenko M., Stöcker H., Bazhenov V.V., Langer E., Dobrowolska A., et al., An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites, J. Mater. Chem. B., 2013, 1, 6469-6476. [Crossref]

  • [8] Wysokowski M., Piasecki A., Bazhenov V.V., Paukszta D., Born R., Schupp P., et al., Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions, J. Chitin Chitosan Sci., 2013, 1, 26-33.

  • [9] Wysokowski M., Behm T., Born R., Bazhenov V.V., Meiβner H., Richter G., et al., Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions, Mater. Sci. Eng. C., 2013, 33, 3935-3941. [Crossref]

  • [10] Suzuki Y., Kopp R., Kogure T., Suga A., Takai K., Tsuhida S., et al., Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod—possible control of iron sulfide biomineralization by the animal, Earth Planet. Sci. Lett., 2006, 242, 39-50.

  • [11] Cook T.L., Stakes D.S., Biogeological mineralization in deep-sea hydrothermal deposits, Science, 1995, 267, 1975-1979.

  • [12] Jun F., Jianghai L.I., Fengyou C.H.U., A study of the microbial mineralization in submarine black smoker chimneys from the Okinawa Trough, Acta. Oceanol. Sin., 2009, 28, 87-95.

  • [13] Tivey M.K., The influence of hydrothermal fluid composition and advection rates on black smoker chimney mineralogy: Insights from modeling transport and reaction, Geochim. Cosmochim. Acta., 1995, 59, 1933-1949. [Crossref]

  • [14] Fortin D., Chatellier X. Biogenic iron oxides In: Pandalai, S.G. (Ed.), Recent Research Developments in Mineralogy, vol. 3. Research Signpost, Trivandrum, Kerala, 2003.

  • [15] Fortin D., Langley S., Formation and occurrence of biogenic iron-rich minerals. Earth-Sci. Rev., 2005, 72, 1-19. [Crossref]

  • [16] Lowenstam H.A., Goethite in radular teeth of recent marine gastropods. Science, 1962, 137, 279-280.

  • [17] Ehrlich H., Biological materials of marine origin, Springer Science+Business Media B.V., Dordrecht, 2010.

  • [18] Gilbert P.U.P.A., Abrecht M., Frazer B.H., The organic-mineral interface in biominerals. Rev. Mineral. Geochem. 2005, 59, 157-185. [Crossref]

  • [19] Cabral A.R., Koglin N., Seabra Gomes Jr A.A., Lehamnn B., Xenotime-hematite aggregates on opaline filaments: evidence for biomineralization in weathered siliciclastic rocks, Capanema, Quadrilatero Ferrifero of Minas Gerais, Brazil. Int. J. Earth Sci., 2012, 101, 377-383. [Crossref]

  • [20] Hawkes J.A., Connelly D.P., Gledhill M., Achtenberg E.P., The stabilization and transportation of dissolved iron from high temperature hydrothermal vents. Earth Planet. Sci. Lett., 2013, 375, 280-290.

  • [21] Kilias S.P., Nomikou P., Papanikolaou D., Polymenakou P.N., Godelitsas A., Argyraki A., et al., New insights into hydrothermal vent processes in the unique shallow-submarine arc-volcano, Kolumbo (Santorini), Greece., Sci. Rep., 2013, 2, 2421.

  • [22] Yücel M., Gartman A., Chan C.S., Luther G.W., Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci., 2011, 4, 367-371. [Crossref]

  • [23] Kennedy C.B., Scott S.D., Ferris F.G., Hydrothermal phase stabilization of 2 line ferrihydrite by bacteria. Chem. Geol. 2004, 212, 269-277.

  • [24] Li M., Toner B.M., Baker B.J., Breier J.A., Sheik C.S., Dick G.J., Microbal iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat. Comm., 2014, 5, 3192.

  • [25] Zvarec O., Purushotham S., Masic A., Ramanujan R.V., Miserez A., Catechol-functionalized chitiosan/iron oxide nanopatricle composite inspired by mussel thread coating and squid beak interfacial chemistry. Langmuir, 2013, 29, 10899-10906. [Crossref]

  • [26] Ehrlich H., Ilan M., Maldonado M., Muricy G., Bavestrelllo G., Kljajic Z., et al., Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int. J. Bol. Macromol. 2010, 47, 132-140. [Crossref]

  • [27] Wysokowski M., Bazhenov V.V., Tsurkan M.V., Galli R., Stelling A.L., Stöcker H., et al., Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int. J. Biol. Macromol. 2013, 62, 94-100. [Crossref]

  • [28] Cruz-Barraza J.A., Carballo J.L., Rocha-Olivares A., Ehrlich H., Hog. M., Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific, PLoS One., 2012, 7, e42049.

  • [29] Michailovski A., Patzke G.R., Hydrothermal synthesis of molybdenium oxide based materials: strategy ans structural chemistry. Chem. Eur. J., 2006, 12, 9122-9134. [Crossref]

  • [30] Geisberger G., Paulus S., Carraro M., Bonchio M., Patzke G.R., Synthesis, characterization and cytotoxicity of polyoxometalate/ carboxymethyl chitosan nanocomposites, Chem. Eur. J. 2011, 17, 4619-4625. [Crossref]

  • [31] Rabenau B.A., The role of hydrothermal synthesis in preparative chemistry, Angew. Chemie. Int. Ed., 1985, 24, 1026-1040. [Crossref]

  • [32] Namratha K., Byrappa K., Novel solution routes of synthesis of metal oxide and hybrid metal oxide nanocrystals, Prog. Cryst. Growth Charact. Mater., 2012, 58, 14-42. [Crossref]

  • [33] Riman R., Suchanek W., Lencka M., Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Des. Matériaux., 2002, 27, 15-36. [Crossref]

  • [34] Kaszewski J., Yatsunenko S., Pełech I., Mijowska E., Narkiewicz U., Godlewski M., High pressure synthesis versus calcination – different approaches to crystallization of zirconium dioxide, Polish. J. Chem. Technol., 2014, 16, 99-105.

  • [35] Anitha A., Sowmya S., Sundheesh Kumar P.T., Deepthi S., Chennazhi K.P., Ehrlich H., et al., Chitin and chitosan in selected biomedical applications. Prog. Polymer Sci., 2014, 39, 1644-1667. [Crossref]

  • [36] Ehrlich H., Steck E., Ilan M., Maldonado M., Muricy G., Bavestrello G., et al., Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications, Int. J. Biol. Macromol. 2010, 47, 141–145. [Crossref]

  • [37] Konhauser K.O., Jones B., Microbal silicification – bacteria (or passive), In: Reitner J., Thiel V. (Eds.), Encyclopedia of Geobiology, Springer, Dordecht, 2011

  • [38] Ouyang J., Pei J., Kuang Q., Xie Z., Zheng L., Supersaturationcontrolled shape evolution of α-Fe2O3 nanocrystals and their facet dependent catalytic and sensing properties. ACS Appl. Mater. Interfaces, 2014, 6, 12505-12514. [Crossref]

  • [39] Elorza M.V., Rico H., Sentandreu R., Calcofluor White alters the assembly of chitin fibrils in Saccharomyces cerevisiae and Candida albicans cells, J. Gen. Microbiol., 1983, 129, 1577-1582.

  • [40] Herth W., Schnepf E., The fluorochrome, Calcofluor White, binds oriented to structural polysaccharide fibrils, Protoplasma, 1980, 105, 129-133.

  • [41] Ehrlich H., Krautter M., Hanke T., Simon P., Knieb C., Heinemann S., et al., First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges. (Hexactinellida: Porifera), J. Exp. Zool. Part B., 2007, 308B, 473-483.

  • [42] Ehrlich H., Maldonado M., Spindler K., Eckert C., Hanke T., Born R., et al., First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera), J. Exp. Zool. Part B., 2007, 356, 347–356.

  • [43] Wysokowski M., Zatoń M., Bazhenov V.V., Behm T., Ehrlich A., Stelling A.L., et al., Identification of chitin in 200-million-yearold gastropod egg capsules, Paleobiology, 2014, 40, 529–540. [Crossref]

  • [44] Ehrlich H., Rigby J.K., Botting J.P., Tsurkan M., Werner C., Schwille P., et al., Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta, Sci. Rep. 2013, 3, 3497.

  • [45] Ehrlich H., Kaluzhnaya O.V., Brunner E., Tsurkan M.V., Ereskovsky A., Ilan M., et al., Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J. Struct. Biol., 2013, 183, 474-483.

  • [46] Ehrlich H., Kaluzhnaya O.V., Tsurkan M.V., Ereskovsky A., Tabachnick K.R., Ilan M., et al., First report on chitinous holdfast in sponges (Porifera), Proc. R. Soc. B, 2013, 280, 20130339.

  • [47] Niu L.-n., Jiao K., Qi Y.-p., Yiu C.K.Y., Ryou H., Arola D.D., et al., Infiltration of silica inside fibrillar collagen, Angew. Chem. Int. Ed., 2011, 50, 11688-11691. [Crossref]

  • [48] Zhou B., Niu L.-n., Shi W., Zhang W., Arola D.D., Breschi L., et al., Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into threedimensional collagen scaffolds, Adv. Funct. Mater., 2013, 24, 1895-1903.

  • [49] Munro N.H., Green D.W., Dangerfield A., McGrath K.M., Biomimetic mineralisation of polymeric scaffolds using combined soaking and Kitano approach, Dalton Trans., 2011, 40, 9259-9268.

  • [50] de Faria D.L.A., Lopes F.N., Heated goethite and natural hematite: Can Raman spectroscopy be used to differentiate them?, Vib. Spectrosc., 2007, 45, 117-121.

  • [51] Ma M.-G., Zhu J.-F., Li S.-M., Jia N., Sun R.-C. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behawior and thermal stability. Mater. Sci. Eng. C, 2012, 1511-1517. [Crossref]

  • [52] Caudron E., Tfayli A., Monnier C., Manfait M., Prognon P., Pradeau D., Identification of hematite particles in sealed glass containers for pharmaceutical uses by Raman microspectroscopy, J. Pharm. Biomed. Anal., 2011, 54, 866-868. [Crossref]

  • [53] Froment F., Tournié A., Colomban P., Raman identification of natural red to yellow pigments: ochre and iron-containing ores. J. Raman Spectrosc., 2008, 39, 560-568. [Crossref]

  • [54] Ogasawara W., Shenton W., Davis S.A., Mann S., Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix, Chem. Mater. 2011, 23, 2973-2978.

  • [55] Spinde K., Kammer M., Freyer K., Ehrlich H., Vournakis J.N., Brunner E., Biomimetic silicification of fibrous chitin from diatoms, Chem. Mater., 2011, 23, 2973-2978. [Crossref]

  • [56] Fang X.-L., Chen C., Jin M.-S., Kuang Q., Xie Z.-X., Xie S.-Y. et al., Single-crystal-like hematite colloidal nanocrystal clusters: synthesis and applications in gas sensors, photocatalysis and water treatment, J. Mater. Chem., 2009, 19,6154-6160. [Crossref]

  • [57] Van T.-K., Cha H.G., Nguyen C.K., Kim S.-W., Jung M.-H., Kang Y.S., Nanocystals of hematite with unconventional shapetruncated hexagonal bipyramid and its optical and magnetic properties, Cryst. Growth Des., 2012, 12, 862-868. [Crossref]

  • [58] Cornell R., Schwertmann U., The iron oxides – structure, properties, occurences and uses. 2nd ed., Wiley-VCH Verlag, Weinheim, 2003.

  • [59] Yue Z.-G., Wei W., You Z.-X., Yang Q.-Z., Yue H., et al., Iron oxide nanotubes for magnetically guided delivery and pH-activated release of insoluble anticancer drugs, Adv. Funct. Mater., 2011, 21, 3446-3454. [Crossref]

  • [60] Li J., He Y., Sun W., Luo Y., Cai H., Pan Y., Shen M., Xia J., Shi X., Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials, 2014, 35, 3666-3677. [Crossref]

  • [61] Gong J., Wang L., Zhao K., Song D., One-step fabrication of chitosan–hematite nanotubes composite film and its biosensing for hydrogen peroxide, Electrochem. Commun., 2008, 10, 123-126. [Crossref]

  • [62] Lu X., Zeng Y., Yu M., Zhai T., Liang C., Xie S., et al., Oxygendeficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors, Adv. Mater., 2014, 26, 3148-3155. [Crossref]

  • [63] Ren T., He P., Niu W., Wu Y., Ai L., Gou X., Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ. Sci. Pollut. Res. 2013, 20, 155-162. [Crossref]

  • [64] Pehlivan E., Tran H.T., Ouerdraogo W.K., Schmidt C., Zachmann D., Bahadir M., Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chem. 2013, 133-138. [Crossref]

  • [65] Huang C.L., Zhang H.Y., Sun Z.Y., Liu Z.M., Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane, Sci. China Chem., 2010, 53, 1502-1508. [Crossref]

  • [66] Yu J., Yu X., Huang B., Zhang X., Dai Y., Hydrothermal synthesis ad visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres, Cryst. Growth. Des.,2009, 9, 1474-1480. [Crossref]

  • [67] Fei X., Shao Z., Chen X., Hematite nanostructures by a silk fibroin-assisted hydrothermal method, J. Mater. Chem. B., 2013, 1, 213-220.

About the article

Received: 2014-10-22

Accepted: 2014-12-17

Published Online: 2015-02-06

Citation Information: Bioinspired Materials, ISSN (Online) 2300-3634, DOI: https://doi.org/10.1515/bima-2015-0001. Export Citation

© 2015 Marcin Wysokowski et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.
Log in