Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomonitoring

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-4606
See all formats and pricing
More options …

Biomonitoring of atmospheric trace elements in agricultural areas and a former uranium mine

Judith H. Rodriguez
  • Corresponding author
  • Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduardo D. Wannaz
  • Corresponding author
  • Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sebastian B. Weller
  • Corresponding author
  • Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María L. Pignata
  • Corresponding author
  • Multidisciplinary Institute of Plant Biology, Pollution and Bioindicator section, Faculty of Physical and Natural Sciences, National University of Córdoba, Av. Vélez Sársfield 1611, X5016CGA Córdoba, Argentina
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-25 | DOI: https://doi.org/10.2478/bimo-2014-0007

Abstract

Most biomonitoring studies worldwide have evaluated the air quality in industrial and urban areas, and even in mining areas to a lesser extent. However, air quality investigations in agricultural areas are scarce. In the present study, the trace metal accumulation and physiological response of the biomonitor Tillandsia capillaris were assessed. Plant samples were transplanted to a reference site, a former open-cast uranium mine, and agricultural sites with varying pollution levels (from normal agricultural practices and near an open rubbish dump) in the province of Córdoba, Argentina. Biomonitors were exposed to ambient air for different exposure periods for physiological or trace element determination. The bioindicators revealed that the highest physiological damage occurred at the sites close to the open dump and the former uranium mine, while a comparison among exposure periods indicating the winter season produced the highest physiological damage in the biomonitor due to the adverse climatic conditions and air pollution. As the trace metal accumulation in the biomonitor was mainly associated with the open dump and uranium mine sites, monitoring and remediation programs should now be applied to these sites in order to alleviate the negative effects of pollution on the environment and the population.

Keywords : air quality; Tillandsia capillaris; open rubbish dump; trace metals; mine

References

  • [1] Moretton J., Guaschino H., Amicone C., Beletzky V., Sánchez M., Santoro V., Noto B., Air Pollution in Argentina: general aspects, legislation, situation in the Capital Federal and Buenos Aires province, Ediciones universo, Buenos Aires, 1996. Google Scholar

  • [2] Guéguen F., Stille P., Millet M., Air quality assessment by tree bark biomonitoring in urban, industrial and rural environments of the Rhine Valley: PCDD/Fs, PCBs and trace metal evidence, Chemosphere, 2011, 85, 195–202. Google Scholar

  • [3] Guéguen F., Stille P., Geagea M.L., Boutin R., Atmospheric pollution in an urban environment by tree bark biomonitoring – Part I: Trace element analysis, Chemosphere, 2012, 86, 1013–1019. CrossrefGoogle Scholar

  • [4] Lehndorff E., Schwark L., Biomonitoring of air quality in the Cologne Conurbation using pine needles as a passive sampler e Part III: Major and trace elements, Atmos. Environ,. 2010, 44, 2822 -2829. CrossrefGoogle Scholar

  • [5] Rodriguez J.H., Pignata M.L., Fangmeier A., Klumpp A., Accumulation of polycyclic aromatic hydrocarbons and trace elements in the bioindicator plants Tillandsia capillaris and Lolium multiflorum exposed at PM10 monitoring stations in Stuttgart (Germany), Chemosphere, 2010, 80, 208-215. Google Scholar

  • [6] Ho B.Q., Clappier A., Road traffic emission inventory for air quality modelling and to evaluate the abatement strategies: a case of Ho Chi Minh City, Vietnam, Atmos. Environ., 2012, 45, 3584-3593. Google Scholar

  • [7] Olszowski T., Tomaszewska B., Góralna-Włodarczyk B., Air quality in non-industrialised area in the typical Polish countryside based on measurements of selected pollutants in immission and deposition phase, Atmos. Environ., 2012, 50, 139-147. CrossrefGoogle Scholar

  • [8] Pandey V.C., Singh N., Impact of fly ash incorporation in soil systems, Agr. Ecosys. Environ., 2010, 136, 16-27. Google Scholar

  • [9] Rodriguez J.H., Klumpp A., Fangmeier A., Pignata M.L., Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr., J. Hazard. Mater,. 2011,187, 58–66. Google Scholar

  • [10] Salazar M.J., Rodriguez J.H., Nieto G.L., Pignata M.L., Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill], J. Hazard. Mater., 2012, 244-253. CrossrefGoogle Scholar

  • [11] Abril G.A., Wannaz E.D., Mateos A.C., Invernizzi R., Plá R.R., Pignata M.L., Characterization of atmospheric emission sources of heavy metals and trace elements through a local-scale monitoring network using T. capillaris, Ecol. Indic., 2014, 40, 153–161. CrossrefGoogle Scholar

  • [12] McLaughlin M.J., Long term changes in cadmium bioavailability in soil, In: Assessment of Soil Phosphorus Status and Management of Phosphatic Fertilisers to Optimise Crop Production, Zapata, F.Sikora, F., Eds., Austria, Bécs, IAEA-TEDOC-1272, IAEA, 354–362, 2002. Google Scholar

  • [13] Osztoics E., Csathó P., Németh T., Baczó Gy., Magyar M., Radimszky L., Osztoics A., Influence of Phosphate Fertilizer Sources and Soil Properties on Trace Element Concentrations of Red Clover, Comm. Soil Sci. Plant Anal, 2005, 36, 557-570. CrossrefGoogle Scholar

  • [14] Hao X., Zhou D., Wang Y., Shi F., Jiang P., Accumulation of Cd, Zn Pb and Cd in Edible Parts of Four Commonly Grown Crops in Two Contaminated Soils, Int. J. Phytoremed., 2011, 13, 289–301. CrossrefGoogle Scholar

  • [15] Rodriguez J.H., Salazar M.J., Steffan L., Pignata M.L., Franzaring J., Klumpp A., Fangmeier A., Assessment of Pb and Zn contents in agricultural soils and soybean crops near to a former battery recycling plant in Córdoba, Argentina, J. Geochem. Explor.,(in press), DOI:10.1016/j.gexplo.2014.05.025 CrossrefGoogle Scholar

  • [16] Lavado R.S., Concentration of potentially toxic elements in field crops grown near and far from cities of the Pampas (Argentina), J Environ. Manage., 2006, 80, 116–119. Google Scholar

  • [17] Youn-Joo A., Assessment of comparative toxicities of lead and copper using plant assay, Chemosphere, 2006, 62, 1359–1365. Google Scholar

  • [18] Blanco A., Determinación de los factores químico-biológicos que intervienen en la acumulación y translocación de Pb en cultivos agrícolas cercanos a una fundición de plomo en la provincia de Córdoba, PhD Thesis, National University of Córdoba, Córdoba, Argentine, 2014,(in Spanish). Google Scholar

  • [19] Bermudez G.M.A., Jasan R., Plá R., Pignata M.L., Heavy metal and trace element concentrations in wheat grains: Assessment of potential non-carcinogenic health hazard through their consumption, J. Hazard. Mater., 2011, 193, 264-271. Google Scholar

  • [20] MAFFJ, Survey of the cadmium contained in agricultural products, MAFFJ (Ministry of Agriculture, Forestry and Fisheries of Japan), Hokkaido, 2002. Google Scholar

  • [21] Zhao Y., Fang X., Mu Y., Cheng Y., Ma Q., Nian H., Yang C., Metal Pollution (Cd, Pb, Zn, and As) in Agricultural Soils and Soybean, Glycine max, in Southern China, B Environ. Contam. Tox., 2014, 92, 427–432. Google Scholar

  • [22] Bermudez G.M.A., Jasan R., Plá R., Pignata M.L., Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. J Hazard. Mater., 2012, 213–214, 447-456. Google Scholar

  • [23] Bačeva K., Stafilov T., Šajn R., Tănăselia C., Air dispersion of heavy metals in the vicinity of the As-Sb-Tl bounded mine and responsiveness of moss as a biomonitoring media in small-scale investigations, Environ. Sci. Pollut. Res., 2013, 20, 8763–8779. CrossrefGoogle Scholar

  • [24] Goix S., Resongles E., Point D., Oliva P., Duprey J.L., Galvez E., Ugarte L., Huayta C., Prunier J., Zouiten C., et al., Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context, Atmos. Environ., 2013, 80, 330-341. Google Scholar

  • [25] Pignata M.L., Gudiño G.L., Wannaz E.D., Plá R.R., González C.M., Carreras H.A., Orellana L., Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor, Environ. Pollut., 2002, 120, 59–68. CrossrefGoogle Scholar

  • [26] Klumpp A., Ansel W., Klumpp G., Breuer J., Vergne P., Sanz M.J., Rasmussen, Ro-Poulsen H., Ribas Artola A., Peñuelas J., et al., Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures, Atmos. Environ., 2009, 43, 329-339. Google Scholar

  • [27] EU European Union, Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air, Off. J. L23 3–16, 2004. Google Scholar

  • [28] Brighigna L., Papini A., Mosti S., Cornia A., Bocchini P., Galletti G., The use of tropical bromeliads (Tillandsia spp.) for monitoring atmospheric pollution in the town of Florence, Italy, Rev. Biol. Trop., 2002, 50, 577-584. Google Scholar

  • [29] Figueiredo A.M.G., Nogueira C.A., Saiki M., Milian F.M., Domingos M., Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil, employing Tillandsia usneoides L. as biomonitor, Environ. Pollut., 2007, 145, 279-292. Google Scholar

  • [30] Papini A., Tani G., Di Falco P., Brighigna L., The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome, Flora, 2010, 205, 94-100. Google Scholar

  • [31] Vianna N.A., Gonçalves D., Brandão F., Barros R.P., Amado Filho G.M., Meire R.O., Torres J.P.M., Malm O., D’Oliveira Júnior D., Andrade L.R., Assessment of heavy metals in the particulate matter of two Brazilian metropolitan areas by using Tillandsia usneoides as atmospheric biomonitor, Environ. Sci. Pollut. Res., 2011, 18, 416-427. CrossrefGoogle Scholar

  • [32] Wannaz E.D., Carreras H.A., Abril G.A., Pignata M.L., Maximum values of Ni2+, Cu2+, Pb2+ and Zn2+ in the biomonitor Tillandsia capillaris (Bromeliaceae): Relationship with cell membrane damage, Environ. Exp. Bot., 2011, 74, 296– 301. Google Scholar

  • [33] Papini A., Tani G., Di Falco P., Brighigna L., The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome, and details of the wing cells degeneration, Flora, 2010, 205, 94–100. Google Scholar

  • [34] Rodriguez J.H., Weller S.B., Wannaz E.D., Klumpp A., Pignata M.L., Air quality biomonitoring in agricultural areas nearby to urban and industrial emission sources in Córdoba province, Argentina, employing the bioindicator Tillandsia capillaris, Ecol. Indic., 2011, 11, 1673–1680. CrossrefGoogle Scholar

  • [35] Wannaz E.D., Pignata M.L., Calibration of four species of Tillandsia as air pollution biomonitors, J. Atmos. Chem., 2006, 53,185–209. Google Scholar

  • [36] Bermudez G.M.A., Rodriguez J.H., Pignata M.L., Comparison of the air pollution biomonitoring ability of three Tillandsia species and the lichen Ramalina celastri in Argentina, Environ. Res., 2009, 109, 6-14. Google Scholar

  • [37] Munzi S., Pirintsos S.A., Loppi S., Chlorophyll degradation and inhibition of polyamine biosynthesis in the lichen Xanthoria parietina under nitrogen stress, Ecotox. Environ. Safe., 2009, 72, 281– 285. Google Scholar

  • [38] Paoli L., Pisani T., Guttová A., Sardella G., Loppi S., Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: Relationship with the lichen diversity, Ecotox. Environ. Safe., 2011, 74, 650–657. Google Scholar

  • [39] Pisani T., Munzi S., Paoli L., Bačkor M., Loppi S., Physiological effects of arsenic in the lichen Xanthoria parietina (L.) Th. Fr., Chemosphere, 2011, 82, 963–969. Google Scholar

  • [40] Wannaz E.D., Carreras H.A., Pérez C.A., Pignata M.L., Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina, Sci. Total Environ., 2006, 361, 267–278. Google Scholar

  • [41] Pignata M.L., Gudiño G.L., Wannaz E.D., Plá R.R., González C.M., Carreras H.A., Orellana L., Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor, Environ. Pollut., 2002, 120, 59–68. CrossrefGoogle Scholar

  • [42] Pignata M.L., Plá R.R., Jasan R.C., Martínez M.S., Rodriguez J.H., Wannaz E.D., Gudiño G.L., Carreras H.A., González C.M., Distribution of atmospheric trace elements and assessment of air quality in Argentina employing the lichen Ramalina celastri as a passive biomonitor: detection of air pollution emission sources, Int. J. Environ. Heal., 2007, 1, 29–46. Google Scholar

  • [43] AIDIS Argentina, Diagnosis of the solid waste situation in Argentina, Secretary of Environment and Sustainable Development of the Nation (in Spanish), 2002. Google Scholar

  • [44] Bermudez G.M.A., Moreno M., Invernizzi R., Plá R., Pignata M.L., Evaluating top soil trace element pollution in the vicinity of a cement plant and former open-cast uranium mine in central Argentina, J. Soils Sediments, 2010, 10, 1308-1323. Google Scholar

  • [45] Tarhanen S., Metsärinne S., Holopainen T., Oksanen J., Membrane permeability response of lichen Bryorie fuscences to wet deposited heavy metal and acid rain, Environ. Pollut., 1999, 104, 121–129. Google Scholar

  • [46] Frati L., Brunialti G., Loppi S., Problems related to lichen transplants to monitor trace element deposition in repeated surveys: a case study from central Italy, J. Atmos. Chem., 2005, 52, 221–230. CrossrefGoogle Scholar

  • [47] Von Arb C., Brunold C., Lichen physiology and air pollution, I. Physiological responses of in situ Parmelia sulcata among air pollution zones within Biel, Switzerland, Can. J. Bot., 1990, 68, 35-42. Google Scholar

  • [48] Nash III T.H., Lichen Biology. University Press, Cambridge, 1996. Google Scholar

  • [49] Saitanis C.J., Rig-Karandinos A.N., Karandinos M.G., Effects of ozone on chlorophyll and quantum yield of tobacco (Nicotiana tabacum L.) varieties, Chemosphere, 2001, 42, 945-953. CrossrefGoogle Scholar

  • [50] Environmental Protection Agency, Estimating ammonia emissions from anthropogenic nonagricultural sources-draft final report, Emission Inventory Improvement Program, 2004. Google Scholar

  • [51] Estrellan C.R., Iino F., Toxic emissions from open burning, Chemosphere, 2010, 80, 193–207. Google Scholar

  • [52] Smith S. J., van Aardenne J., Klimont Z., Andres R.J., Volke A., Arias D., Anthropogenic sulfur dioxide emissions: 1850–2005, Atmos. Chem. Phys., 2011, 11, 1101–1116. Google Scholar

  • [53] Hernández Adrover J.J., Modeling of formation and pollutants emission in combustion systems, Dissertation, Ediciones de la Universidad de Castilla – La Mancha (in Spanish), 2001. Google Scholar

  • [54] Wannaz E.D., Abril G., Rodriguez J.H., Pignata M.L., Assessment of polycyclic aromatic hydrocarbons in industrial and urban areas using passive air samplers and leaves of Tillandsia capillaris, J. Environ. Chem. Eng., 2013, 1, 1028–1035. Google Scholar

  • [55] Andreae M.O., Merlet P., Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles, 2001, 15, 955–966. Google Scholar

  • [56] Khlifi R., Olmedo P., Gil F., Feki-Tounsi M., Hammami B., Rebai A., Hamza-Chaffai A., Biomonitoring of cadmium, chromium, nickel and arsenic in general population living near mining and active industrial areas in Southern Tunisia, Environ. Monit. Assess., 2014, 186, 761–779. Google Scholar

  • [57] Saunier J-B., Losfeld G., Freydier R., Grison C., Trace elements biomonitoring in a historical mining district (les Malines, France), Chemosphere, 2013, 93, 2016–2023. Google Scholar

  • [58] Oyedele D.J., Asonugho C., Awotoye O.O., Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application, Electron. J. Environ. Agric. Food Chem., 2006, 1446-1453. Google Scholar

  • [59] Shomar B.H., Trace elements in major solid-pesticides used in the Gaza Strip, Chemosphere, 2006, 65, 898-905. Google Scholar

  • [60] Giuffré de López Camelo L., Ratto de Miguez S., Marbán L., Heavy metals input with phosphate fertilizers used in Argentina, Sci. Total Environ., 1997, 204, 245-250. Google Scholar

About the article

Received: 2014-07-29

Accepted: 2014-08-13

Published Online: 2014-09-25


Citation Information: Biomonitoring, Volume 1, Issue 1, ISSN (Online) 2300-4606, DOI: https://doi.org/10.2478/bimo-2014-0007.

Export Citation

© 2014 Judith H. Rodriguez et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in