Jump to ContentJump to Main Navigation
Show Summary Details
More options …


1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Are semen quality parameters sufficient for biomonitoring spermatozoa DNA integrity and oxidatively damaged DNA

Hueiwang Anna Jeng
  • Corresponding author
  • School of Community and Environmental Health, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruei-Nian Li
  • Corresponding author
  • Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wen-Yi Lin
  • Corresponding author
  • Department of Occupational Medicine and Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-18 | DOI: https://doi.org/10.1515/bimo-2015-0004


The present study aimed to investigate the relationship between semen quality parameters and DNA integrity, and determine whether semen quality parameters could serve as a reliable biomarker for monitoring sperm DNA damage. Conventional semen parameters from a total of 202 male human subjects were analyzed. DNA fragmentation and 8-oxo-7,8-dihydro-2′- deoxyguanosine (8-oxoGuo) were used to assess sperm DNA integrity. DNA fragmentation was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and sperm chromatin structure assay (SCSA), while 8-oxodGuo was quantified by the liquid chromatography/tandem mass spectrometry (LC-MS/MS) coupled with an on-line solid phase system. The levels of 8-oxodGuo levels in sperm were related to the percentages of DNA fragmentation measured by both the TUNEL and SCSA (r = 0.22, p = 0.048; r = 0.12, p = 0.039). Sperm vitality, motility and morphology from all of the participants exhibited a weak correlation with the levels of 8-oxodGuo and the percentages of DNA fragmentation. Semen quality parameters may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Semen quality parameters may be insufficient to monitor sperm DNA fragmentation and oxidative damage. DNA damage in sperm is recommended to be included in routine measurements.

Keywords : Oxidative stress; semen quality; motility; 8-oxodGuo; DNA fragmentation


  • [1] Kihaile P.E., Misumi J., Hirotsuru K., Kumasako Y., Kisanga R.E., Utsunomiya T., Comparison of sibling oocyte outcomes after intracytoplasmic sperm injection and in vitro fertilization in severe teratozoospermic patients in the first cycle, Int. J. Androl., 2003, 26, 57-62. CrossrefGoogle Scholar

  • [2] Kellerman L.M., Windt M.L., Lombard C.J., The effect of sperm morphology and testicular spermatozoa on embryo quality, SAJOG., 2007, 13, 46-50. Google Scholar

  • [3] Shu J.H, Zhang B., Feng G.X., Gan X.Y., Zhou H., Zhou L., Influence of sperm morphology on the outcomes and neonatal status in IVF-ET, Zhonghua Nan Ke Xue, 2010, 16, 897-900. Shen H., Ong C., Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility, Free Radic. Biol. Med., 2000, 28, 529-536. Google Scholar

  • [4] Guzick D.S., Overstreet J.W., Factor-Litvak P., Brazil C.K., Nakajima S.T., Coutifaris C, et al., National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men, N. Engl. J. Med., 2001, 345, 1388-1393. Google Scholar

  • [5] Perdrix A., Saïdi R., Ménard J.F., Gruel E., Milazzo J.P., Macé B., Rives N., Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME), Int. J. Androl., 2012, 35, 491-498. CrossrefGoogle Scholar

  • [6] Said T.M., Agarwal A., Sharma R.K., Thomas A.J., Sikka S.C., Impact of sperm morphology on DNA damage caused by oxidative stress induced by beta-nicotinamide adenine dinucleotide phosphate, Fertil. Steril., 2005, 83, 95-103. CrossrefGoogle Scholar

  • [7] Zribi N., Chakroun N.F., Elleuch H., Abdallah F.B., Ben Hamida A.S., Gargouri J., et al., Sperm DNA fragmentation and oxidation are independent of malondialdheyde, Reprod. Biol. Endocrinol., 2011, 9, 47. Web of ScienceGoogle Scholar

  • [8] Shen H.M., Chia S.E., Ong C.N., Evaluation of oxidative DNA damage in human sperm and its association with male infertility, J. Androl., 1999, 20, 718-723. Google Scholar

  • [9] Chen H., Zhao H.X., Huang X.F., Chen G.W., Yang Z.X., SunW.J., et al. Does high load of oxidants in human semen contribute to male factor infertility? Antioxidants & Redox Signaling 2012, 16 754-759. Web of ScienceCrossrefGoogle Scholar

  • [10] Kao S.H., Chao H.T., Chen H.W., Hwang T.I., Liao T.L., Wei Y.H., Increase of oxidative stress in human sperm with lower motility, Fertil. Steril., 2008, 89,1183-1190. CrossrefWeb of ScienceGoogle Scholar

  • [11] Meseguer M., Martı´nez-Conejero J.A., O’Connor J.E., Pellicer A., Remohı´ J., Garrido N., The significance of sperm DNA oxidation in embryo development and reproductive outcome in an oocyte donation program: a new model to study a male infertility prognostic factor. Fertil. Steril., 2008, 89, 1191-1199. Web of ScienceCrossrefGoogle Scholar

  • [12] Kemal Duru N., Morshedi M, Oehninger S., Effects of hydrogen peroxide on DNA and plasma membrane integrity of human spermatozoa, Fertil. Steril., 2000, 74, 1200-1207. CrossrefGoogle Scholar

  • [13] Aitken R.J., Baker M.A., De Iuliis G.N, Nixon B., New insights into sperm physiology and pathology, Handb. Exp. Pharmacol., 2010, 99-115. CrossrefGoogle Scholar

  • [14] Kratz E.M., Kałuża A., Ferens-Sieczkowska M., Olejnik B., Fiutek R., Zimmer M., Piwowar A., Gelatinases and their tissue inhibitors are associated with oxidative stress: a potential set of markers connected with male infertility, Reprod. Fertil. Dev., 2015, doi: 10.1071/RD14268. CrossrefGoogle Scholar

  • [15] Ko E.Y., Sabanegh E.S., Agarwal A., Male infertility testing: reactive oxygen species and antioxidant capacity, Fertil. Steril., 2014,102, 1518-1527. Web of ScienceCrossrefGoogle Scholar

  • [16] Sakkas D., Alvarez J.G., Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis, Fertil. Steril., 2010, 93, 1027-1036. CrossrefWeb of ScienceGoogle Scholar

  • [17] Tremellen K., Oxidative stress and male infertility – a clinical perspective, Hum. Reprod. Update, 2008, 14, 243-258. Web of ScienceCrossrefGoogle Scholar

  • [18] McEvoy A., Roberts P., Yap K., Matson P., Development of a simplified method of human semen storage for the testing of sperm DNA fragmentation using the Halosperm G2 test kit, Fertil. Steril., 2014, 102, 981-988. Web of ScienceCrossrefGoogle Scholar

  • [19] Aitken R.J., De luliis G.N., Origins and consequences of DNA damage in male germ cells, Reprod. Biomed. Online, 2007, 14, 727-733. CrossrefGoogle Scholar

  • [20] Pant N., Shukla M., Kumar Patel D., Shukla Y., Mathur N., Kumar Gupta Y., et al., Correlation of phthalate exposures with semen quality, Toxicol. Appl. Pharmacol., 2008, 231, 112-116. Web of ScienceGoogle Scholar

  • [21] Latini G., Del Vecchio A., Massaro M., Verrotti A., De Felice C., Phthalate exposure and male infertility, Toxicol., 2006, 226, 90-98. Google Scholar

  • [22] Kasahara E., Sato E.F., Miyoshi M., Konaka R., Hiramoto K., Sasaki J., et al., Role of oxidative stress in germ cell apoptosis induced by di(2-ethylhexyl)phthalate, Biochem. J., 2002, 365, 849-856. Google Scholar

  • [23] Badouard C, Me´ne´zo Y, Panteix G, Ravanat JL, Douki T, Cadet J., et al., Determination of new types of DNA lesions in human sperm, Zygote, 2008, 16, 9-13. Web of ScienceGoogle Scholar

  • [24] Gedik C.M., Collins A., ESCODD (European Standards Committee on Oxidative DNA Damage) Establishing the background level of base oxidation in humanlymphocyte DNA: results of an interlaboratory validation study, FASEB J., 2005, 19, 82-84. Google Scholar

  • [25] Guetens G., De Boech G., Highley M., van Oosterom A.T., de Bruijin E.A., Oxidative DNA damage: biological significance and methods of analysi,. Crit. Rev. Clin. Lab. Sci., 2002, 39, 3310-3457 Google Scholar

  • [26] Chao M.R., Yen C.C., Hu C.W., Prevention of artifactual oxidation in determination of cellular 8-oxo-7,8-dihydro-2’- deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction, Free Radic. Biol. Med., 2008, 44, 464-473. Web of ScienceGoogle Scholar

  • [27] Hu C.W., Chao MR., Sie CH., Urinary analysis of 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2’-deoxyguanosine by isotope-dilution LC-MS/MS with automated solid-phase extraction: Study of 8-oxo-7,8-dihydroguanine stability, Free Radic. Biol. Med., 2010, 48, 89-97. Web of ScienceGoogle Scholar

  • [28] World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen. 5th ed. Geneva: World Health Organization; 2010. Google Scholar

  • [29] Henkel R., Hoogendijk C.F., Bouic P.J., Kruger T.F., TUNEL assay and SCSA detemrine different aspects of sperm DNA damage, Andrologia, 2010, 42, 305-313. Web of ScienceCrossrefGoogle Scholar

  • [30] Evenson D.P., Wixon R., Environmental toxicants cause sperm DNA fragmentation as detected by the sperm chromatin structure assay, Toxicol. Appl. Pharmacol., 2005, 207, S532-S537. Google Scholar

  • [31] Bonde J.P., Joffe M., Apostoli P., Dale A., Kiss P., Spano M., et al., Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels, Occup. Environ. Med., 2007, 59, 234-242. Google Scholar

  • [32] Gosálvez J., Cortés-Gutiérrez E.I., Nuñez R., Fernández J.L., Caballero P., López-Fernández C., et al., A dynamic assessment of sperm DNA fragmentation versus sperm viability in proven fertile human donors, Fertil. Steril., 2009, 92, 1915-1919. Web of ScienceCrossrefGoogle Scholar

  • [33] Guz J., Gachowski D., Foksinski M., Rozalski R, Zarakowska E., Siomek A., Comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men, PLoS One, 2013, 12 Google Scholar

  • [34] Montjean D., Ménézo Y., Benkhalifa M., Cohen M., Belloc S., Cohen-Bacrie P., et al., Malonaldehyde formation and DNA fragmentation: two independent sperm decays linked to reactive oxygen species, Zygote, 2010, 18, 265-268. Web of ScienceCrossrefGoogle Scholar

  • [35] Aitken R.J., De Iuliis G.N., Finnie J.M., Hedges A., McLachlan R.I., Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria, Hum. Reprod., 2010, 25, 2415-2426. CrossrefWeb of ScienceGoogle Scholar

  • [36] Epe B., Ballmaier D., Roussyn I., Briviba K., Sies H., DNA damage by peroxynitrite characterized with DNA repair enzymes, Nucleic Acids Res. 1996, 24, 4105-4110. CrossrefGoogle Scholar

  • [37] Sharma R.K., Agarwal A., Role of reactive oxygen species in male infertility, Uro., 1996, 48, 835-850. Google Scholar

  • [38] Fraczek M., Szkutnik D., Sanocka D., Kurpisz M., Peroxidation components of sperm lipid membranes in male infertility, Ginekol. Pol., 2001, 72, 73-79. Google Scholar

  • [39] Rao B., Soufir J.C., Martin M., David G., Lipid peroxidation in human spermatozoa as related to midpiece abnormalities and motility, Gamete Research, 1989, 24, 127-134. CrossrefGoogle Scholar

  • [40] Ferramosca A., Provenzano S.P., Montagna D.D., Coppola L., Zara V., Oxidative Stress Negatively Affects Human Sperm Mitochondrial Respiration. Urology, 2013, 82, 78-83. CrossrefWeb of ScienceGoogle Scholar

  • [41] Borini A., Tarozzi N., Bizzaro D., Bonu M.A., Fava L., Flamigni, C., et al., Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART, Hum. Reprod., 2006, 21, 2876-2881. CrossrefGoogle Scholar

  • [42] Evenson, D.P., Wixon, R., Data analysis of two in vivo fertility studies using Sperm Chromatin Structure Assay-derived DNA fragmentation index vs. pregnancy outcome. Fertil. Steril., 2008 90, 1229–1231. CrossrefWeb of ScienceGoogle Scholar

  • [43] Cassuto N.G., Hazout A, Hammoud I., Balet R., Bouret D., Barak Y, et al., Correlation between DNA defect and sperm-head Morphology Reproductive BioMedicine Online, 2012, 24, 211-218. Google Scholar

  • [44] Carrell D.T., Wilcox A.L., Lowy L., Peterson C.M., Jones K.P., Erickson L., et al., Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss, Obstet. Gynecol., 2003, 101, 1229-1235. CrossrefGoogle Scholar

  • [45] Menkveld R., Holleboom C.A., Rhemrev J.P., Measurement and significance of sperm morphology, Asian J. Androl., 2011, 13, 59-68. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-03-09

Accepted: 2015-04-14

Published Online: 2015-05-18

Citation Information: Biomonitoring, Volume 2, Issue 1, ISSN (Online) 2300-4606, DOI: https://doi.org/10.1515/bimo-2015-0004.

Export Citation

© 2015 Hueiwang Anna Jeng et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in