Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Biomonitoring

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-4606
See all formats and pricing
More options …

Biomonitoring and assessing total mercury concentrations and pools in forested areas

Mina Nasr
  • Corresponding author
  • Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, E3B 5A3, New Brunswick, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul A. Arp
  • Corresponding author
  • Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, E3B 5A3, New Brunswick, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-25 | DOI: https://doi.org/10.1515/bimo-2015-0008

Abstract:

This article focusses on the bio-monitoring of total Hg (THg), sulfur (TS) and carbon (TC) concentrations and pool sizes in forest vegetation and soil layers within the context of a maritime-to-inland transect study in southwestern New Brunswick. This transect stretches from the Grand Manan Island in the Bay of Fundy to the mainland coast (Little Lepreau to New River Beach) and 100 km northward to Fredericton. Along the Bay, frequent summer fogs are thought to have led to increased THg concentrations in forest vegetation and soils such that island THg > coast THg > inland THg concentrations. Transect sampling was done in two phases: (i) a general vegetation and soil survey, and (ii) focusing on specific soil layers (forest floor, top portion of the mineral soils), and select moss and mushrooms species. By way of multiple regression, it was found that soil, moss and mushroom THg and TS were strongly related to one another, with THg decreasing from the island to the inland locations. The accumulated Hg pool within the mineral soil, however, far exceeded (i) the estimated THg pools of the forest biomass (trees, moss and mushrooms) and the forest floor, and (ii) the literature-reported and case-study inferred net input/output rates for annual atmospheric Hg deposition and sequestration, Hg volatilization, and Hg leaching. Partitioning the total soil Hg pool into geogenically and atmospherically derived portions suggested that mineral soils in temperate to boreal forest regions have accumulated and retained atmospherically derived Hg over thousand years and more. These results are summarized in terms of further guiding forest THg monitoring and modelling efforts in terms of specific vegetation and soil sampling targets.

Keywords : Total Hg concentrations; pools; fluxes; THg turnover rates; foliage; wood; moss carpets; lichens; mushrooms; forest floor; mineral soil.

References

  • Google Scholar

  • [1] Miller E.K., Vanarsdale A., Keeler G.J., Chalmers A., Poissant L., Kamman N.C., Brulotte R. Estimation and mapping of wet and dry mercury deposition across northeastern North America, Ecotoxicol., 2005, 14, 53-70. CrossrefGoogle Scholar

  • [2] Kolka R.K., Mitchell C.P.J., Jeremiason J.D., Hines N.A., Grigal D.F., Engstrom D.R., Coleman- Wasik J.K., Nater E.A., Swain E.B., Monson B.A., Fleck J.A., Johnson B., Almendinger J.E., Branfireun B.A., Brezonik P.L., Cotner J.B. Mercury cycling in peatland watersheds, In: Kolka R, Sebestyen S, Verry ES, Brooks K (Eds.), Peatland biogeochemistry and watershed hydrology at the Marcell Experimental Forest, CRC Press, 2011, 349-370. Google Scholar

  • [3] Schröder W., Pesch P., Hertel A., Schonrock S., Harmens H., Mills G., Ilyin I. Correlation between atmospheric deposition of Cd, Hg and Pb and their concentrations in mosses specified for ecological land classes covering Europe, Atm. Pollut. Research. 2013, 4, 267-274. Google Scholar

  • [4] Demers J.D., Blum J.D., Zak D.R. Mercury isotopes in a forest ecosystem: implications for air-surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cycles, 2013, 27, 222-238. Google Scholar

  • [5] Berg T., Fjeld E., Steinnes E. Atmospheric mercury in Norway: contributions from different sources, Sci. Total Environ., 2006, 368, 3-9. Google Scholar

  • [6] Gramatica P., Battaini F., Giani E., Papa E., Jones R.J., Preatoni D., Cenci R.M. Analysis of mosses and soils for quantifying heavy metal concentrations in Sicily: a multivariate and spatial analytical approach, Environ. Sci. Pollut. Res. Int., 2006, 13, 28-36. CrossrefGoogle Scholar

  • [7] Bash J.O., Bresnahan P., Miller D.R. Dynamic surface interface exchanges of mercury: a review and compartmentalized modeling framework, J. Appl. Meteorol. Clim., 2007, 46, 1606-1618. CrossrefGoogle Scholar

  • [8] Nasr M., Malloch D.W., Arp P.A. Quantifying Hg within ectomycorrhizal fruiting bodies, from emergence to senescence, Fungal Biol., 2012, 116, 1163-1177. CrossrefGoogle Scholar

  • [9] Kos A., Rajfur M., Šrámek I., Wac M. Mercury concentration in lichen, moss and soil samples collected from the forest areas of Praded and Glacensis Euroregions (Poland and Czech Republic), Environ. Monitor. Assess., 2012, 184, 6765-6774. Google Scholar

  • [10] Frescholtz T.E., Gustin M.S., Schorran D.E., Fernandez G.C. Assessing the source of mercury in foliar tissue of quaking aspen, Environ. Toxicol. Chem., 2003, 22, 2114-2119. CrossrefGoogle Scholar

  • [11] Stamenkovic J., Gustin M.S. Nonstomatal versus stomatal uptake of atmospheric mercury, J. Environ. Sci. Technol., 2009, 43, 1367-1372. CrossrefGoogle Scholar

  • [12] Garty J. Biomonitoring atmospheric heavy metals with lichens: Theory and Application, Crit. Rev. Plant. Sci., 2001, 20, 309-371. CrossrefGoogle Scholar

  • [13] Gjengedal E., Steinnes E. Uptake of metal ions in moss from artificial precipitation, Environ. Monitor. Assess., 1990, 14, 77-87. CrossrefGoogle Scholar

  • [14] Rühling A., Tyler G. Changes in the atmospheric deposition of minor and rare elements between 1975 and 2000 in south Sweden, as measured by moss analysis, Environ. Pollut. 2004, 131, 417-423. Google Scholar

  • [15] Harmens H., Norris D.A., Steinnes E., Kubin E., Piispanen J., Alber R., Aleksiayenak Y., Blum O., Coskun M., Dam M., De T.L., Fernandez J.A., Frolova M., Frontasyeva M., Gonzalez-Miqueo L., Grodzinska K., Jeran Z., Korzekwa S., Krmar M., Kvietkus K., Leblond S., Liiv S., Magnusson S.H., Mankovska B., Pesch R., Ruhling A., Santamaria J.M., Schroder W., Spiric Z., Suchara I., Thoni L., Urumov V., Yurukova L., Zechmeister H.G. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe, Environ. Pollut., 2010, 158, 3144-3156. Google Scholar

  • [16] Evans C.A., Hutchinson T.C. Mercury accumulation in transplanted moss and lichens at high elevation sites in Quebec, Water Air Soil Pollut., 1996, 90, 475-488. Google Scholar

  • [17] Steinnes E., Berg T., Sjobakk T.E. Temporal and spatial trends in Hg deposition monitored by moss analysis, Sci. Total Environ. 2003, 304, 215-219. Google Scholar

  • [18] Glooschenko W.A., Capobianco J.A. Metal content of Sphagnum mosses from two Northern Canadian bog ecosystems, Water Air Soil Poll., 1978, 10, 215-220. CrossrefGoogle Scholar

  • [19] Svoboda L., Zimmermannova K., Kalac P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter, Sci Total Environ., 2000, 246, 61-67. Google Scholar

  • [20] Svoboda L., Havlícková B., Kalac P. Contents of cadmium, mercury and lead in edible mushrooms growing in a historical silver-mining area. Food Chem. 2006, 96, 580-585. CrossrefGoogle Scholar

  • [21] Chudzynski K., Bielawski L., Falandysz J. Mercury bio-concentration potential of Larch Bolete, Suillus grevillei, mushroom, Bull. Environ. Contam. Toxicol., 2009, 83, 275-279. CrossrefGoogle Scholar

  • [22] Ettler V., Rohovec J., Navrátil T., Mihaljevic M. Mercury distribution in soil profiles polluted by lead smelting. Bull. Environ. Contam. Toxicol., 2007, 78, 13-17. CrossrefGoogle Scholar

  • [23] Falandysz J., Frankowska A., Mazur A. Mercury and its bioconcentration factors in King Bolete (Boletus edulis) Bull. Fr., J. Environ. Sci. Health. Tox. Hazard. Subst. Environ. Eng. 2007a, 42, 2089-2095. CrossrefGoogle Scholar

  • [24] Falandysz J., Lipka K., Mazur A. Mercury and its bioconcentration factors in fly agaric (Amanita muscaria) from spatially distant sites in Poland. J. Environ. Sci. Health Tox. Hazard Subst. Environ. Eng., 2007b, 42, 1625-1630. CrossrefGoogle Scholar

  • [25] Grigal D.F., Kolka R.K., Fleck J.A., Nater E.A. Mercury budget of an upland-peatland watershed, Biogeochem., 2000, 50, 95-109. CrossrefGoogle Scholar

  • [26] Grigal D.F. Mercury sequestration in forests and peatlands: a review, J. Environ. Qual., 2003, 32: 393-405. CrossrefGoogle Scholar

  • [27] Rea A.W., Lindberg S.E., Keeler G.J. Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall, Atm. Environ., 2001, 35, 3453-3462. Google Scholar

  • [28] Ericksen J.A., Gustin M.S., Schorran D.E., Johnson D.W., Lindberg S.E., Coleman J.S. Accumulation of atmospheric mercury in forest foliage, Atm. Environ., 2003, 37, 1613-1622. Google Scholar

  • [29] Risch M.R., Dewild J.F., Krabbenhoft D.P., Kolka R.K., Zhang L. Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 2012, 161, 284-290. Google Scholar

  • [30] Juillerat J.I., Ross D.S., Bank M.S. Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA., Environ. Toxicol. Chem., 2012, 8,1720-9. CrossrefGoogle Scholar

  • [31] Demers J.D., Driscoll C.T., Fahey T.J., Yavitti J.B. Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA., Ecol. Appl., 2007, 17, 1341-1351. CrossrefGoogle Scholar

  • [32] Schwesig D., Matzner E. Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in central Europe. Biogeochem. 2001, 53, 181-200. CrossrefGoogle Scholar

  • [33] Ravichandran, M. Interactions between mercury and dissolved organic matter–a review. Chemosphere 2004, 55, 319–331. CrossrefGoogle Scholar

  • [34] Kalbitz K., Solinger S., Park J.-H., Michalzik B., Matzner E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 165, 277-304 Google Scholar

  • [35] Selvendiran P., Driscoll C.T., Bushey J.T., Montesdeoca M.R. Wetland influence on mercury fate and transport in a temperate forested watershed, Environ Pollut., 2008, 154, 46-55. Google Scholar

  • [36] Vidon P.G., Mitchell C.P. Jacinthe P.A., Baker M.E., Liu X., Fisher K.R. Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest, Environ Sci Process Impacts, 2013, 15, 2131-2141. Google Scholar

  • [37] Stoor R.W., Hurley J.P., Babiarz C.L. Armstrong D.E., Subsurface sources of methyl mercury to Lake Superior from a wetlandforested watershed, Sci Total Environ., 2006, 368, 99-110. Google Scholar

  • [38] Vidon P.G., Mitchell C.P.J., Jacinthe P.-A., Baker M.E., Liu X., Fisher K.R. Mercury dynamics in groundwater across three distinct riparian zone types of the US Midwest. Environ. Sci.: Processes Impacts, 2013, 15, 2131-2141 Google Scholar

  • [39] Revis N.W., Osborne T.R., Holdsworth G., Hadden C. Mercury in soil - a method for assessing acceptable limits, Archives Environ. Contam. Toxicol., 1990, 19, 221-226. CrossrefGoogle Scholar

  • [40] Cia Y., Jaff R., Jones R.D. Interactions between dissolved organic carbon and mercury species in surface waters of the Florida Everglades, Appl. Geochem. 1999, 14, 395-407. Google Scholar

  • [41] Gabriel M.C., Williamson D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment, Environ. Geochem. Health, 2004, 26, 421-434. CrossrefGoogle Scholar

  • [42] Skyllberg U., Bloom P.R., Qian J., Lin C.M., Bleam W.F. Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups, J. Environ. Sci. Technol., 2006, 40, 4174-4180. CrossrefGoogle Scholar

  • [43] Kerin E.J., Gilmour C.C., Roden E., Suzuki M.T., Coates J.D., Mason R.P. Mercury methylation by dissimilatory iron-reducing bacteria, Appl. Environ. Microbiol., 2006, 72, 7919-7921. CrossrefGoogle Scholar

  • [44] Schlüter K. Review: evaporation of mercury from soils. An integration and synthesis of current knowledge, Environ. Geol., 2000, 39, 249-271. CrossrefGoogle Scholar

  • [45] Maprani A.C., Al T.A., Macquarrie K.T., Dalziel J.A., Shaw S.A., Yeats P.A. Determination of mercury evasion in a contaminated headwater stream, J. Environ. Sci. Technol., 2005, 39, 1679-1687. CrossrefGoogle Scholar

  • [46] Kirk J.L., St Louis V.L., Sharp M.J. Rapid reduction and reemission of mercury deposited into snowpacks during atmospheric mercury depletion events at Churchill, Manitoba, Canada, J. Environ. Sci. Technol., 2006, 40, 7590-7596. CrossrefGoogle Scholar

  • [47] Faïn X., Helmig D., Hueber J., Obrist D., Williams M.M. Mercury dynamics in the Rocky Mountain, Colorado, Snowpack. Biogeosci. Discussion, 2012, 9, 15423-15458. Google Scholar

  • [48] Schwesig D., Krebs O. The role of ground vegetation in the uptake of mercury and methyl mercury in a forest ecosystem, Plant Soil, 2003, 253, 445-455. Google Scholar

  • [49] Choi H.D., Holsen T.M. Gaseous mercury fluxes from the forest floor of the Adirondacks, Environ. Pollut., 2009, 157, 592-600. Google Scholar

  • [50] Johnson D.W., Benesch J.A., Gustin M.S., Schorran D.S., Lindberg S.E., Coleman J.S. Experimental evidence against diffusion control of Hg evasion from soils, Sci. Total Environ., 2003, 304, 175-184. Google Scholar

  • [51] Nasr M., Arp P.A. Hg concentrations and accumulations in fungal fruiting bodies, as influenced by forest soil substrates and moss carpets, Appl Geochem., 2011, 26, 1905-1917. CrossrefGoogle Scholar

  • [52] Mitchell C.P., Kolka R.K., Fraver S. Singular and combined effects of blowdown, salvage logging, and wildfire on forest floor and soil mercury pools, J. Environ. Sci. Technol., 2012, 46, 7963-7970. CrossrefGoogle Scholar

  • [53] Broster B.E., Dickson M.L., Parkhill M.A. Comparison of humus and till as prospecting material in areas of thick overburden and multiple ice-flow events: an example from northeastern New Brunswick, J. Geochem. Explor., 2009, 103, 115-132. Google Scholar

  • [54] Xia K., Skyllberg U.L., Bleam W.F., Bloom P.R., Nater E.A., Helmke P.A. X-ray absorption spectroscopic evidence for the complexation of Hg (II) by reduced sulfur in soil humic substances, J. Environ. Sci. Technol., 1999, 33, 257-261. CrossrefGoogle Scholar

  • [55] U.S. Geological Survey (USGS) North America Soil Geochemical Landscape Project (NAS-GLP), 2011, USGS, U.S. Department of the Interior. Google Scholar

  • [56] Goodwin T.A. Geogenic mercury in glacial till, Kejimkujik National Park, In: O’Driscoll N.J., Rencz A.N., Lean D.R.S. (Eds.), Mercury cycling in a wetland - dominated ecosystem: a multidisciplinary study, Soc Environ Toxicol Chem (SETAC), Pensacola, Florida, 2005,. 229-246. Google Scholar

  • [57] Parsons M.B., Little M.E., Goodwin T.A. Background concentrations of arsenic and mercury in soils from the Montague and Goldenville gold districts, Nova Scotia, Atlantic Geol., 2008, 44, 3. Google Scholar

  • [58] Ketris M.P., Yudovich Y.E. Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals, Int. J. Coal. Geol., 2009, 78, 135-148. CrossrefGoogle Scholar

  • [59] Farrah H., Pickering W.F. Sorption of mercury species by clay-minerals, Water Air Soil Pollut., 2014, 9, 23-31. Google Scholar

  • [60] Patra M., Sharma A. Mercury toxicity in plants, Botanical Review, 2000, 66, 379-422. CrossrefGoogle Scholar

  • [61] Martínez-Trinidad S., Silva G.H., Islas M.E.R., Reyes J.M., Munguía G.S., Valdez S.S., Martíne R.G. Total mercury in terrestrial systems (air-soil-plant-water) at the mining region of San Joaquín, Queretaro, Mexico, Geofísica Int., 2013, 52, 43-58. Google Scholar

  • [62] Gnamuš A., Byrne A.R., Horvat M. Mercury in the soil-plantdeer- predator food chain of a temperate forest in Slovenia, J. Environ. Sci. Technol., 2000, 34, 3337-3345. CrossrefGoogle Scholar

  • [63] Duffy L.K., Kaiser C., Ackley C., Richter K.S. Mercury in hair of large Alaskan herbivores: routes of exposure, Alces. 2001, 37, 293-301. Google Scholar

  • [64] Berzas Nevado J.J., Rodríguez Martín-Doimeadios R.C., Guzmán Bernardo F.J., Rodríguez Fariñas N., Patiño Ropero M.J. Mercury speciation analysis in terrestrial animal tissues, Talanta., 2012, 99, 859-64, doi: 10.1016/j.talanta.2012.07.046. CrossrefGoogle Scholar

  • [65] Tomiyasu T., Matsuo T., Miyamoto J., Imura R., Anazawa K., Sakamoto H. Low level mercury uptake by plants from natural environments - mercury distribution in Solidago altissima L., Environ. Sci., 2005, 12, 231-238. Google Scholar

  • [66] Skyllberg U., Bloom P.R., Qian J., Lin C.M., Bleam W.F. Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups, J. Environ. Sci. Technol., 2006, 40, 4174-4180. CrossrefGoogle Scholar

  • [67] Taylor D.L. A new dawn - the ecological genetics of mycorrhizal fungi, New Phytologist, 2000, 147, 236-239. Google Scholar

  • [68] Demirbas A. Heavy metal bioaccumulation by mushrooms from artificially fortified soils, Food Chem. 2001, 74, 293-301. CrossrefGoogle Scholar

  • [69] Hinton J. Earthworms as a bioindicator of mercury pollution in an artisanal gold mining community, Cachoeira do Piria, Brazil, MSc Thesis, University of British Columbia, CA, 2002. Google Scholar

  • [70] Isildak O., Turkekul I., Elmastas M., Tuzen M. Analysis of heavy metals in some wild-grown edible mushrooms from the Middle Black Sea region, Turkey, Food Chem., 2004, 86, 547-552. CrossrefGoogle Scholar

  • [71] Kalac P., Niznanska M., Bevilaqua D., Staskova I. Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter, J. Sci. Total Environ., 1996, 177, 251-258. Google Scholar

  • [72] Toljander J.F., Eberhardt U., Toljander Y.K., Paul L.R., Taylor A.F.S. Species composition of an ectomycorrhizal fungal community along a local nutrient gradient in a boreal forest, New Phytologist., 2006, 170, 873-883. Google Scholar

  • [73] Zhang Z.S., Zheng D.M., Wang Q.C., Lv X.G. Bioaccumulation of total and methyl Mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.), Bull. Environ. Contam. Toxicol., 2009, 83, 937-942. CrossrefGoogle Scholar

  • [74] Chudzyński K., Bielawski L., Falandysz J. Mercury bio-concentration potential of larch bolete, Suillus grevillei, mushroom, Bull. Environ. Contam. Toxicol., 2009, 83, 275-279. CrossrefGoogle Scholar

  • [75] Evers D.C., Han Y.J., Driscoll C.T., Kamman N.C., Goodale M.W., Lambert K.F., Holsen T.M., Chen C.Y., Clair T.A., Butler T. Biological mercury hotspots in the northeastern United States and southeastern Canada, Biosci., 2007, 57, 29-43. CrossrefGoogle Scholar

  • [76] Burt M.D.B. and Wells P.G. Threats to the health of the Bay of Fundy: potential problems posed by pollutants, In: Burt, M.D.B. and Wells, P.G. (Eds.), BoFEP Technical Report No. 5. 12-1-2010 Wolfville, NS, Bay of Fundy Ecosystem Partnership (30 April 2010, St. Andrews, New Brunswick, CA), Proceedings of a Workshop organized under the auspices of BoFEP’s Working Group on Stress and Cumulative Effects, 2010, 1-72. Google Scholar

  • [77] Pilgrim W., Poissant L., Trip L. The northeast states and eastern Canadian provinces mercury study: a framework for action, summary of the Canadian Chapter, Sci. Total Environ., 2000, 261, 177-184. Google Scholar

  • [78] Weathers K.C., Lovett G.M., Likens G.E., Lathrop R. The effect of landscape features on deposition to Hunter Mountain, Catskill Mountains, New York, Ecol. Applicat., 2000, 10, 528-540. CrossrefGoogle Scholar

  • [79] Ritchie C.D., Richards W., Arp P.A. Mercury in fog on the Bay of Fundy (Canada), Atm. Environ., 2006, 40, 6321-6328. Google Scholar

  • [80] Weiss-Penzias P.S., Ortiz Jr. C., Acosta R.P., Heim W., Ryan J.P., Fernandez D., Collett Jr. J.L., Flegal A.R. Total and monomethyl mercury in fog water from the central California coast, Geophys. Res. Letters., 2012, 39, L03804. Google Scholar

  • [81] Canadian Soil Information System (CanSIS), Agriculture and Agri-food Canada, CanSIS - Soil Survey Report of Southwestern New Brunswick, Canadian Soil Information System, 2008. Google Scholar

  • [82] Clifford M.J., Hilson G.M., Hodson M.E. Tin and mercury, In: Hooda P.S. (Ed.), Trace elements in soils, John Wiley & Sons, Ltd, Blackwell Publishing Ltd, Chichester, UK, 2010. Google Scholar

  • [83] Siwik E.I., Campbell L.M., Mierle G. Fine-scale mercury trends in temperate deciduous tree leaves from Ontario, Canada, Sci. Total Environ., 2009, 1407, 6275-6279. Google Scholar

  • [84] Poissant L., Pilote M., Yumvihoze E., Lean D. Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Quebec, Canada, J. Geophys. Res.: Atmos., 2008, 113 D10. Google Scholar

  • [85] Keys. K., Arp P.A. Nova Scotia Forest Biomass Project, University of New Brunswick, Forest Watershed Research Centre, 2009. Google Scholar

  • [86] Wang J.J., Guo Y.Y., Guo D.L., Yin S.L., Kong D.L., Liu YS, Zeng H. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal, J. Environ. Sci. Technol., 2012, 46, 769-777. CrossrefGoogle Scholar

  • [87] Jones V.A.S., Dolan L. The evolution of root hairs and rhizoids. Annals of Botany, 2012, p. 1-8, doi:10.1093/aob/mcs136. CrossrefGoogle Scholar

  • [88] Culgin BM. Mercury in till and bedrock southeast of Kejimkujik National Park, Nova Scotia. Atl. Geol. 2006 42. Google Scholar

  • [89] de Vos W, Gregorauskiene V, Marsina K, Salminen R, Salpeteur I, Tarvainen T, O’Connor PJ, Demetriades A, Pirc S, Batista MJ, Bidove M. Distribution of elements in subsoil and topsoil: http://weppi.gtk.fi/publ/foregsatlas/articles/Soil.pdf. Accessed 21. April 2014. Google Scholar

  • [90] Pokharel A.K., Obrist D. Fate of mercury in tree litter during decomposition, Biogeosci., 2011, 8, 2507-2521. CrossrefGoogle Scholar

  • [91] Zhang C.F., Meng F.R., Trofymow J.A., Arp P.A. Modeling mass and nitrogen remaining in litterbags for Canadian forest and climate conditions, Can. J. Soil Sci., 2007, 87,413-432. CrossrefGoogle Scholar

  • [92] Blair J.M., Nitrogen, sulfur and phosphorus dynamics in decomposing deciduous litter in the southern Appalachians, Soil Biol. Biochem., 1988, 60, 693-701. CrossrefGoogle Scholar

  • [93] Johnson, D.W., Lindberg, S.E. Atmospheric deposition and forest nutrient cycling: A synthesis of the integrated forest study. Ecological Series 91, Springer, New York, 1992. 707 pp. Google Scholar

  • [94] Cairns M.A., Brown S., Helmer E.H., Baumgardner G.A. Root biomass allocation in the world’s upland forests. Oecologia. 1997: 111, 1–11. CrossrefGoogle Scholar

  • [95] Li Z., Kurz W.A., Apps M.J., Beukema S.J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. Forest Research. 2003; 33: 126-136. CrossrefGoogle Scholar

  • [96] Xing Z., Bourque C.P., Swift D.E., Clowater C.W., Krasowski M., Meng F.R. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiol. 2005; 25: 1207-1217. CrossrefGoogle Scholar

  • [97] Hazlett P.W., Gordon A.M., Sibley P.K., Buttle J.M. Stand carbon stocks and soil carbon and nitrogen storage for riparian and upland forests of boreal lakes in northeastern Ontario. Forest Ecol. Managem. 2005; 219: 56-58. Google Scholar

  • [98] Neilson E.T., MacLean D.A., Meng F.R., Arp P.A. Spatial distribution of carbon in natural and managed stands in an industrial forest in New Brunswick, Canada. Forest Ecol. Managem. 2007. Google Scholar

  • [99] Wang J.J., Guo Y.Y., Guo D.L., Yin S.L., Kong D.L., Liu Y.S., Zeng H. Fine root mercury heterogeneity: metabolism of lower-order roots as an effective route for mercury removal. J. Environ. Sci. Technol. 2012; 46: 769-777. CrossrefGoogle Scholar

  • [100] Kranabetter J.M., Kroeger P. Ectomycorrhizal mushroom response to partial cutting in a western hemlock/western red cedar forest. Can J Forest Research. 2001; 31: 978-987. Google Scholar

  • [101] Bååth E., Söderström B. Comparison of two methods for the estimation of soil fungal lengths. Soil Biol. Biochem. 1980; 12: 387. Google Scholar

  • [102] Söderström B.E. Seasonal fluctuations of active fungal biomass in the horizons of a podzolized pine forest soil in Central Sweden. Soil Biol. Biochem. 1979; 11: 149-154. CrossrefGoogle Scholar

  • [103] Johansson J.F., Paul L.R., Finlay R.D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol .Ecol. 2004; 48: 1-13. CrossrefGoogle Scholar

  • [104] Porada P., Weber B., Elbert W., Pöschl U., Kleidon A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles, 28, 71–85. Google Scholar

  • [105] Nasr M. Geospatial analysis of mercury concentrations in stream and lake sediments across Canada, PhD Thesis, University of New Brunswick, New Brunswick, CA, 2015. Google Scholar

  • [106] Shanley J.B., Bishop K. Mercury cycling in terrestrial watershed. In: Mercury in the Environment, Pattern and process, Bank, M.S. (Ed.), University of California Press. (1st ed.), 2012, 119-142. Google Scholar

  • [107] Bluth, G.J.S., Kump L.R. Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim Acta, 58, 2341-2359. Google Scholar

  • [108] Jutras M-F., Nasr M., Castonguay M., Pit C., Pomeroy J.H., Smith T.P., Zhang C-F., Ritchie C.D., Meng F-R., Clair T.A., Arp P.A. Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model, Ecol. Modelling, 2011, 222, 2291-2313. Google Scholar

  • [109] Schelker J., Burns D.A., Weiler M., Laudon H. Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: conceptualization and modeling, J. Geophys. Res., 2011, 116, 1-17. Google Scholar

  • [110] Hartman J.S., Weisberg P.J., Pillai R., Ericksen J.A., Kuiken T., Lindberg S.E., Zhang H., Rytuba J.J., Gustin M.S. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States, J. Environ. Sci. Technol., 2009, 43, 4989-4994. CrossrefGoogle Scholar

  • [111] Su Y., Han F., Shiyab S., Monts D.L. Phytoextraction and accumulation of mercury in selected plant species grown in soil contaminated with different mercury compounds, WM’07 Conference, (February 25 - March 1, 2007, Tucson, AZ), 2007. Google Scholar

  • [112] Rieder S.R., Brunner I., Horvat M., Jacobs A., Frey B. Accumulation of mercury and methylmercury by mushrooms and earthworms from forest soils, 2011, 159, 2861-2869. Google Scholar

  • [113] Page K.D. Mercury concentrations in the bedrock of southwestern Nova Scotia: a reconnaissance study. Atl. Geology 2005, 41, Number 1 Google Scholar

  • [114] Hintelmann, H. Harris R., Heyes A., Hurley J.P., Kelly C.A., Krabbenhoft D.P., Lindberg S., Rudd J.W.M., Scott K.J., St.Louis V.L. Reactivity and mobility of new and old Mercury Deposition in a boreal forest ecosystem during the First Year of the METAALICUS Study. Environ. Sci. Technol. 2002,36,5034-5040 CrossrefGoogle Scholar

  • [115] Matilainen T., Verta M., Korhonen H., Uusi-Rauva A., Niemi M. Behavior of mercury in soil profiles: impact of increased precipitation, acidity, and fertilization on mercury methylation, Water Air Soil Pollut., 2001, 125, 105-119. Google Scholar

  • [116] Becker-Heidmann P., Scharpenseel H-W. Studies of soil organic matter dynamics using natural carbon isotopes, Sci. Total Environ., 1992, 117/118, 305-312. Google Scholar

  • [117] Obrist D., Johnson D.W., Lindberg S.E., Luo Y., Hararuk O., Bracho R., Battles J.J., Dail D.B., Edmonds R.L., Monson R.K., Ollinger S.V., Pallardy S.G., Pregitzer K.S., Todd D.E. Mercury distribution across 14 U.S. Forests, Part I: spatial patterns of concentrations in biomass, litter, and soils, J. Environ. Sci. Technol., 2011, 45, 3974-3981. Google Scholar

  • [118] Obrist D., Johnson D.W., Edmonds R.L. Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests, J. Plant Nutr. Soil Sci., 2012, 175, 68-77. Google Scholar

  • [119] Kolka R.K., Grigal D.F., Nater E.A., Verry E.S. Hydrologic cycling of mercury and organic Carbon in a forested upland-bog watershed, Soil Sci. Soc. Am. J., 2001, 65, 897-905. CrossrefGoogle Scholar

  • [120] Blackwell B.D. and Driscoll C.T. Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition, Environ. Pollution., 2015, 202, 126-134. Google Scholar

  • [121] Arp, P.A. Turnover times for wood, forest litter and soil organic matter, Ecological forest management handbook, GR Larocque (Ed.), CRC Press, 2016, 441-454. Google Scholar

  • [122] Nasr M. Mercury levels in fungal fruiting bodies from interior and coastal forests in the Bay of Fundy region, New Brunswick, Canada. MScF Thesis. University of New Brunswick, 2007, 195 pp. Google Scholar

About the article

Received: 2015-08-22

Accepted: 2015-12-10

Published Online: 2016-02-25


Citation Information: Biomonitoring, Volume 2, Issue 1, ISSN (Online) 2300-4606, DOI: https://doi.org/10.1515/bimo-2015-0008.

Export Citation

© 2016 Mina Nasr, Paul A. Arp. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in