Jump to ContentJump to Main Navigation
Show Summary Details
More options …


Emerging Science

Open Access
See all formats and pricing
More options …

Human Biomonitoring – An overview on biomarkers and their application in Occupational and Environmental Health

Carina Ladeira
  • Corresponding author
  • Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa – IPL, 1990-096 Lisboa, Portugal
  • Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, ENSP, Universidade Nova de Lisboa, 1600-550 Lisboa, Portugal
  • Grupo de Investigação em Genética e Metabolismo, Escola Superior de Tecnologia da Saúde de Lisboa – IPL, 1990-096 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Susana Viegas
  • Corresponding author
  • Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa – IPL, 1990-096 Lisboa, Portugal
  • Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, ENSP, Universidade Nova de Lisboa, 1600-550 Lisboa, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-14 | DOI: https://doi.org/10.1515/bimo-2016-0003


Human biomonitoring (HBM) is a scientificallydeveloped approach for assessing human exposures to natural and synthetic compounds from environment, occupation, and lifestyle. It relies on the measurement of particular substances or biological breakdown products, known as metabolites, in human tissues and/or fluids, and also includes the study of their effects and the possible influence of individual susceptibility as response modulators. HBM is a growing area of knowledge used for exposure and risk assessment in environmental and occupational health, and its importance has been increasing as a result of advancements in the ability to measure greater numbers of chemicals in the human body and tissues. In order to achieve this purpose, HBM focuses on the use of biomarkers as measurable indicators of early changes in biological systems. However, because data interpretation requires caution, it is strongly recommended that the interpretation of HBM results be combined with air monitoring data or pharmacokinetic modelling in order to better understand exposure sources and the metabolism of chemicals.

Keywords: Human biomonitoring; biomarkers; genotoxicity; exposure; environment; occupational


  • [1] Sexton K., Needham L., Pirkle J., Human Biomonitoring of Environmental Chemicals, Am. Sci. 2004, 92, 38. Google Scholar

  • [2] CDC, Third National Report in Human Exposure to Environmental Chemicals, Atlanta, GA: Centers for Disease Control and Prevention, 2005. Google Scholar

  • [3] Bertazzi P.A., Mutti A., Biomarkers, Disease Mechanisms and their Role in Regulatory Decisions, in: Wild C., Vineis P., Garte S. (Eds.), Mol. Epidemiol. Chronic Dis., John Wiley & Sons, Ltd, 2008: pp. 243–254. CrossrefGoogle Scholar

  • [4] Manno M., Viau C., in collaboration with, Cocker J., Colosio C., Lowry L., et al., Biomonitoring for occupational health risk assessment (BOHRA), Toxicol. Lett., 2010, 192, 3–16. Google Scholar

  • [5] Watson W.P., Mutti A., Role of biomarkers in monitoring exposures to chemicals: present position, future prospects, Biomarkers, 2004, 9, 211–242. CrossrefGoogle Scholar

  • [6] American Chemistry Council, International Council of Chemical Associations (ICCA) and Long-Range Research Initiative (LRI) Workshop: making sense of human biomonitoring data (26-27 July 2006, Minneapolis, Minnesota, USA), 2006, 1-24. Google Scholar

  • [7] Hond E.D., Govarts E., Willems H., Smolders R., Casteleny L., Kolossa-Gehring M., et al., First steps toward harmonized human biomonitoring in Europe: demonstration project to perform human biomonitoring on a European scale, Environmental Health Perspectives, 2016, 123, 255-263. Web of ScienceGoogle Scholar

  • [8] Angerer J., Ewers U., Wilhelm M., Human biomonitoring: state of the art, Int. J. Hyg. Environ. Health., 2007, 2010, 201–228. Web of ScienceCrossrefGoogle Scholar

  • [9] – WHO, Human biomonitoring: facts and figures. Copenhagen: WHO Regional Office for Europe, 2015. Google Scholar

  • [10] Valverde M., Rojas E., Environmental and occupational biomonitoring using the Comet assay, Mutat. Res., 2009, 681, 93–109. Web of ScienceGoogle Scholar

  • [11] National Research Council, Biological markers in environmental health research. Committee on Biological Markers of the National Research Council, Environ. Health Perspect., 1987, 74, 3–9. Google Scholar

  • [12] Fergurson, L., Biomarkers as endpoints in intervention studies, in: Mol. Epidemiol. Chronic Dis., C. P. Wild, P. Vineis, and S. Garte, John Wiley & Sons, Ltd, 2008. CrossrefGoogle Scholar

  • [13] Schulte P., Mazzuckelli L.F., Validation of biological markers for quantitative risk assessment, Environ. Health Perspect., 1991, 90, 239–246. Google Scholar

  • [14] Davis C.D., Milner J.A., Biomarkers for diet and cancer prevention research: potentials and challenges, Acta Pharmacol. Sin., 2007, 28, 1262–1273. CrossrefWeb of ScienceGoogle Scholar

  • [15] Waterfield, C., Timbrell, J. A., Biomarkers – An Overview, in: Gen. Appl. Toxicol., 2nd ed., Stockton Press, 1999. Google Scholar

  • [16] Kyrtopoulos S., Biomarkers in environmental carcinogenesis research: Striving for a new momentum, Toxicol. Lett., 2006, 162, 3–15. Google Scholar

  • [17] Timbrell J.A., Biomarkers in toxicology, Toxicology, 1998, 28, 1–12. CrossrefGoogle Scholar

  • [19] U.S. Congress, Office of Technology Assessment, Genetic monitoring and screening in the workplace, 1990. Google Scholar

  • [20] Viegas S., Veiga L., Figueiredo P., Almeida A., Carolino E., Viegas C., Assessment of Workers’ Exposure to Aflatoxin B1 in a Portuguese Waste Industry. Annals of Occupational Hygiene, 2014, 1-9. Web of ScienceGoogle Scholar

  • [21] Viegas S.,Veiga L., Verissimo C., Sabino R., Figueiredo P., Almeida A., Carolino E., Viegas C., Occupational Exposure to Aflatoxin B1 in Swine Production and Possible Contamination Sources, Journal of Toxicology and Environmental Health, Part A: Current Issues, 2013, 76, 944-951. Google Scholar

  • [22] Viegas S.,Veiga L., Verissimo C., Sabino R., Figueiredo P., Almeida A., Carolino E., Viegas C., Occupational exposure to aflatoxin B1: the case of poultry and swine production. World Mycotoxin Journal, 2013, 6:309-315. Google Scholar

  • [23] Viegas S.; Veiga L.; Almeida A.; dos Santos M. Carolino E.; Viegas C., Occupational Exposure to Aflatoxin B1 in a Portuguese Poultry Slaughterhouse. Annals of Occupational Hygiene, 2016, 60(2):176-83. CrossrefGoogle Scholar

  • [24] Barrett J.C., Vainio H., Peakall D., Goldstein B.D., 12th meeting of the Scientific Group on Methodologies for the Safety Evaluation of Chemicals: susceptibility to environmental hazards, Environ. Health Perspect., 1997, 105 Suppl 4, 699–737. Google Scholar

  • [25] Albertini R.J., Nicklas J.A., O’Neill J.P., Future research directions for evaluating human genetic and cancer risk from environmental exposures., Environ. Health Perspect., 1996, 104, 503–510. Google Scholar

  • [26] Hagmar L., Bonassi S.. Strömberg U, Mikoczy Z., Lando C.. Hansteen I.L, et al., Cancer predictive value of cytogenetic markers used in occupational health surveillance programs: a report from an ongoing study by the European Study Group on Cytogenetic Biomarkers and Health, Mutat. Res., 1998, 405, 171–178. Google Scholar

  • [27] Wild C.P., Environmental exposure measurement in cancer epidemiology, Mutagenesis, 2009, 24, 117–125. CrossrefWeb of ScienceGoogle Scholar

  • [28] Bonassi S., Coskun E., Ceppi M., Lando C, Bolognesi C., Burgaz S., et al., The HUman MicroNucleus project on eXfoLiated buccal cells (HUMNXL): The role of life-style, host factors, occupational exposures, health status, and assay protocol, Mutat. Res. Mutat. Res., 2011, 728, 88–97. Web of ScienceGoogle Scholar

  • [29] Battershill J.M., Burnett K., Bull S., Factors affecting the incidence of genotoxicity biomarkers in peripheral blood lymphocytes: impact on design of biomonitoring studies, Mutagenesis, 2008, 23, 423–437. Web of ScienceCrossrefGoogle Scholar

  • [30] Knudsen L.E., Hansen A.M., Biomarkers of intermediate endpoints in environmental and occupational health, Int. J. Hyg. Environ. Health., 2007, 210, 461–470. Web of ScienceGoogle Scholar

  • [31] Ersson C., International validation of the comet assay and a human intervention study, Karolinska Institutet, 2011. Google Scholar

  • [32] Rosival, L., Trnove, T. Gene-Environment interactions (a challenge for the future). CEJOEM, 1999, 5(1): 3-16. Google Scholar

  • [33] Vähäkangas K., Molecular Epidemiology and Ethics: Biomarkers for Disease Susceptibility, in: Wild C., Vineis P., Garte S., (Eds.), Mol. Epidemiol. Chronic Dis., John Wiley & Sons, Ltd, 2008: pp. 281–297. CrossrefGoogle Scholar

  • [34] Valverde M, Rojas E, The Comet assay in human biomonitoring, in: Comet Assay Toxicol., Anderson, D. and Dhawan, A, Royal Society of Chemistry, 2009: pp. 227 – 251. www.rsc.org. Google Scholar

  • [35] Decker J. A., DeBord D. G., Bernard B., Dotson G.S., Halpin J., Hines C.J., Kiefer M., Myers K., Page E., Schulte P.,Snawder J., Recommendations for Biomonitoring of Emergency Responders: Focus on Occupational Health Investigations and Occupational Health Research. Mil Med. 2013, 178: 68–75. Web of ScienceGoogle Scholar

  • [36] Au W.W., Cajas-Salazar N., Salama S., Factors contributing to discrepancies in population monitoring studies, Mutat. Res. Mol. Mech. Mutagen., 1998, 400, 467–478. Google Scholar

  • [37] Bonassi S., Au W.W., Biomarkers in molecular epidemiology studies for health risk prediction, Mutat. Res., 2002, 511, 73–86. Google Scholar

  • [38] McDiarmid M.A., Chemical Hazards in Health Care, Ann. N. Y. Acad. Sci. 2096, 1076, 601–606. Google Scholar

  • [39] Olden K., Guthrie J., Genomics: implications for toxicology, Mutat. Res., 2001, 473, 3–10. Google Scholar

  • [40] Choi J., Morck TA., Joas A., Knudsen E., Major national human biomonitoring programs in chemical exposure assessment, Environmental Science, 2015, 2, 782-802. Google Scholar

About the article

Received: 2016-08-28

Accepted: 2016-10-05

Published Online: 2016-12-14

Citation Information: Biomonitoring, Volume 3, Issue 1, ISSN (Online) 2300-4606, DOI: https://doi.org/10.1515/bimo-2016-0003.

Export Citation

© 2016 Carina Ladeira, Susana Viegas. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pieranna Chiarella, Renata Sisto, and Ario de Marco
Future Science OA, 2018, Page FSO361
Khizar Hayat, Muhammad Afzal, Muhammad Anjum Aqueel, Sajjad Ali, Muhammad Farhan Saeed, Ahmad Kaleem Qureshi, Muhammad Irfan Ullah, Qaiser M. Khan, Muhammad Tayyib Naseem, Umair Ashfaq, and Christos A. Damalas
Science of The Total Environment, 2019, Volume 655, Page 102
Goran Gajski, Carina Ladeira, Marko Gerić, Vera Garaj-Vrhovac, and Susana Viegas
Environmental Research, 2018, Volume 161, Page 26
Goran Gajski, Marko Gerić, Višnja Oreščanin, and Vera Garaj-Vrhovac
Ecotoxicology and Environmental Safety, 2018, Volume 148, Page 561

Comments (0)

Please log in or register to comment.
Log in